首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits
【24h】

Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits

机译:使用模拟反向传播电路在忆阻神经网络架构中学习

获取原文
获取原文并翻译 | 示例

摘要

The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a backpropagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we propose analog backpropagation learning circuits for various memristive learning architectures, such as deep neural network, binary neural network, multiple neural network, hierarchical temporal memory, and long short-term memory. The circuit design and verification are done using TSMC 180-nm CMOS process models and TiO2-based memristor models. The application level validations of the system are done using XOR problem, MNIST character, and Yale face image databases.
机译:学习算法的片上实现将加快交叉开关阵列中神经网络的训练。对于神经网络架构,使用梯度下降操作的反向传播算法的电路级设计和实现是一个未解决的问题。在本文中,我们为各种忆阻学习架构(例如深度神经网络,二进制神经网络,多神经网络,分层时间记忆和长短期记忆)提出了模拟反向传播学习电路。电路设计和验证使用TSMC 180-nm CMOS工艺模型和基于TiO2的忆阻器模型完成。使用XOR问题,MNIST字符和耶鲁人脸图像数据库完成了系统的应用程序级别验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号