首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery
【24h】

Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery

机译:具有可配置错误恢复功能的低功耗近似无符号乘法器

获取原文
获取原文并翻译 | 示例

摘要

Approximate circuits have been considered for applications that can tolerate some loss of accuracy with improved performance and/or energy efficiency. Multipliers are key arithmetic circuits in many of these applications including digital signal processing (DSP). In this paper, a novel approximate multiplier with a low power consumption and a short critical path is proposed for high-performance DSP applications. This multiplier leverages a newly designed approximate adder that limits its carry propagation to the nearest neighbors for fast partial product accumulation. Different levels of accuracy can be achieved by using either OR gates or the proposed approximate adder in a configurable error recovery circuit. The approximate multipliers using these two error reduction strategies are referred to as AM1 and AM2, respectively. Both AM1 and AM2 have a low mean error distance, i.e., most of the errors are not significant in magnitude. Compared with a Wallace multiplier optimized for speed, an$8imes 8$AM1 using four most significant bits for error reduction shows a 60% reduction in delay (when optimized for delay) and a 42% reduction in power dissipation (when optimized for area). In a$16imes 16$design, half of the least significant partial products are truncated for AM1 and AM2, which are thus denoted as TAM1 and TAM2, respectively. Compared with the Wallace multiplier, TAM1 and TAM2 save from 50% to 66% in power, when optimized for area. Compared with existing approximate multipliers, AM1, AM2, TAM1, and TAM2 show significant advantages in accuracy with a low power-delay product. AM2 has a better accuracy compared with AM1 but with a longer delay and higher power consumption. Image processing applications, including image sharpening and smoothing, are considered to show the quality of the approximate multipliers in error-tolerant applications. By utilizing an appropriate error recovery scheme, the proposed approximate multipliers achieve similar processing accuracy as exact multipliers, but with significant improvements in power.
机译:已考虑将近似电路用于可以忍受精度损失,性能和/或能量效率提高的应用。在许多应用中,乘法器是关键的算术电路,包括数字信号处理(DSP)。本文针对高性能DSP应用提出了一种新型的近似乘法器,它具有低功耗和短关键路径。该乘法器利用了新设计的近似加法器,该加法器将其进位传播限制到最近的邻居,以实现快速的部分乘积。通过在可配置的错误恢复电路中使用“或”门或提议的近似加法器,可以实现不同级别的精度。使用这两种误差减少策略的近似乘数分别称为AM1和AM2。 AM1和AM2均具有较低的平均误差距离,即,大多数误差在大小上都不重要。与针对速度进行了优化的华莱士乘法器相比, n <内联公式xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http:// www .w3.org / 1999 / xlink “> $ 8 times 8 $ nAM1,使用四个最高有效位来表示错误减少表明延迟减少了60%(针对延迟进行了优化),功耗降低了42%(针对面积进行了优化)。在 n <内联公式中xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org/1999/xlink “> $ 16 乘以16 $ ndesign,对于AM1和AM2,一半的最低有效乘积被截断,因此分别表示为TAM1和TAM2。与华莱士乘法器相比,TAM1和TAM2在针对面积进行了优化时可将功耗从50%节省到66%。与现有的近似乘法器相比,AM1,AM2,TAM1和TAM2在低功耗产品的精度上显示出显着优势。与AM1相比,AM2的精度更高,但延迟更长,功耗更高。图像处理应用程序(包括图像锐化和平滑)被认为可以显示在容错应用程序中近似乘法器的质量。通过利用适当的错误恢复方案,所提出的近似乘法器可实现与精确乘法器相似的处理精度,但是功耗得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号