首页> 外文期刊>IEEE transactions on biomedical circuits and systems >A Resource-Optimized VLSI Implementation of a Patient-Specific Seizure Detection Algorithm on a Custom-Made 2.2 cm^2 Wireless Device for Ambulatory Epilepsy Diagnostics
【24h】

A Resource-Optimized VLSI Implementation of a Patient-Specific Seizure Detection Algorithm on a Custom-Made 2.2 cm^2 Wireless Device for Ambulatory Epilepsy Diagnostics

机译:在定制的2.2cm ^ 2无线设备上进行患者特定癫痫发作检测算法的资源优化的VLSI实现,用于动态癫痫诊断

获取原文
获取原文并翻译 | 示例

摘要

A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the development of a mini-PCB that integrates a low-power wireless data transceiver and a programmable processor for hosting the seizure detection algorithm is discussed. The algorithm uses only EEG signals from the frontal lobe electrodes while yielding a seizure detection sensitivity and specificity competitive to the standard full EEG systems. The experimental validation of the algorithm VLSI implementation proves the possibility of conducting accurate seizure detection using quickly-mountable dry-electrode headsets without the need for uncomfortable/painful through-hair electrodes or adhesive gels. Details of design and optimization of the algorithm, the VLSI implementation, and the mini-PCB development are presented and resource optimization techniques are discussed. The optimized implementation is uploaded on a low-power Microsemi Igloo FPGA, requires 1237 logic elements, consumes 110 $mu$W dynamic power, and yields a minimum detection latency of 10.2 $mu$s. The measurement results from the FPGA implementation on data from 23 patients (198 seizures in total) shows a seizure detection sensitivity and specificity of 92.5 and 80.1, respectively. Comparison to the state of the art is presented from system integration, the VLSI implementation, and the wireless communication perspectives.
机译:提出了一种患者特异性癫痫症,其形式的无线可携带的动态设备的形式。首先,描述了癫痫癫痫发作检测的资源优化机器学习算法的设计,VLSI实现和实验验证。接下来,讨论了集成低功耗无线数据收发器的MINI-PCB的开发和用于托管抓取检测算法的可编程处理器。该算法仅使用来自额叶电极的EEG信号,同时产生癫痫发作检测灵敏度和对标准完整EEG系统竞争的特异性。算法VLSI实现的实验验证证明了使用可快速安装的干电极耳机进行精确癫痫发作检测的可能性,而无需不需要舒适/疼痛的通孔电极或粘合剂凝胶。展示了算法的设计和优化的细节,介绍了VLSI实现和迷你PCB开发,并讨论了资源优化技术。优化的实现在低功耗MicroSemi IGLOO FPGA上上传,需要1237个逻辑元素,消耗110 $ mu $ W动态功率,并产生10.2美元 mu $ s的最小检测延迟。来自23名患者的数据(总共缉获的198次癫痫发作)的FPGA实施结果分别显示出92.5和80.1的癫痫发作检测灵敏度和特异性。与系统集成,VLSI实现和无线通信视角来呈现与本领域的最新的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号