首页> 外文期刊>IEEE Signal Processing Magazine >Novel Arithmetics in Deep Neural Networks Signal Processing for Autonomous Driving: Challenges and Opportunities
【24h】

Novel Arithmetics in Deep Neural Networks Signal Processing for Autonomous Driving: Challenges and Opportunities

机译:深度神经网络中的新型算法,自主驾驶信号处理:挑战与机遇

获取原文
获取原文并翻译 | 示例

摘要

This article focuses on the trends, opportunities, and challenges of novel arithmetic for deep neural network (DNN) signal processing, with particular reference to assisted- and autonomous driving applications. Due to strict constraints in terms of the latency, dependability, and security of autonomous driving, machine perception (i.e., detection and decision tasks) based on DNNs cannot be implemented by relying on remote cloud access. These tasks must be performed in real time in embedded systems on board the vehicle, particularly for the inference phase (considering the use of DNNs pretrained during an offline step). When developing a DNN computing platform, the choice of the computing arithmetic matters. Moreover, functional safe applications, such as autonomous driving, impose severe constraints on the effect that signal processing accuracy has on the final rate of wrong detection/decisions. Hence, after reviewing the different choices and tradeoffs concerning arithmetic, both in academia and industry, we highlight the issues in implementing DNN accelerators to achieve accurate and lowcomplexity processing of automotive sensor signals (the latter coming from diverse sources, such as cameras, radar, lidar, and ultrasonics). The focus is on both general-purpose operations massively used in DNNs, such as multiplying, accumulating, and comparing, and on specific functions, including, for example, sigmoid or hyperbolic tangents used for neuron activation.
机译:本文重点介绍了深度神经网络(DNN)信号处理的新型算术的趋势,机会和挑战,特别是辅助和自主驾驶应用。由于在延迟,可靠性和自动驾驶的可靠性和安全性方面严格的限制,通过依赖于远程云访问,不能实现基于DNN的机器感知(即,检测和决策任务)。这些任务必须在车辆上的嵌入式系统中实时执行,特别是对于推理阶段(考虑在离线步骤期间使用DNN之前的使用)。开发DNN计算平台时,选择计算算术问题。此外,诸如自主驾驶的功能安全应用,对信号处理精度对错误检测/决定的最终速率的影响施加严重的约束。因此,在审查学术界和工业中有关算术的不同选择和权衡后,我们突出了实施DNN加速器的问题,以实现汽车传感器信号的准确和低复杂性处理(后者来自不同的来源,例如摄像机,雷达,激光器和超声波)。重点是在DNN中大量使用的通用操作,例如乘以,累积和比较,以及特定功能,包括例如用于神经元激活的乙状体或双曲线切线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号