首页> 外文期刊>IEEE signal processing letters >Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory
【24h】

Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory

机译:音频噪声功率谱密度估计使用长短期内存

获取原文
获取原文并翻译 | 示例

摘要

We propose a method using a long short-term memory (LSTM) network to estimate the noise power spectral density (PSD) of single-channel audio signals represented in the short-time Fourier transform (STFT) domain. An LSTM network common to all frequency bands is trained, which processes each frequency band individually by mapping the noisy STFT magnitude sequence to its corresponding noise PSD sequence. Unlike deep-learning-based speech-enhancement methods, which learn the full-band spectral structure of speech segments, the proposed method exploits the sub-band STFT magnitude evolution of noise with long time dependence, in the spirit of the unsupervised noise estimators described in the literature. Speaker- and speech-independent experiments with different types of noise show that the proposed method outperforms the unsupervised estimators, and it generalizes well to noise types that are not present in the training set.
机译:我们提出了一种使用长短期存储器(LSTM)网络的方法来估计在短时傅里叶变换(STFT)域中表示的单通道音频信号的噪声功率谱密度(PSD)。通过将噪声STF幅度序列映射到其对应的噪声PSD序列,训练了所有频带共同的LSTM网络,其通过将噪声STFT幅度序列映射映射到其对应的噪声PSD序列来处理每个频带。与学习语音段的全带光谱结构的基于深度学习的语音增强方法不同,所提出的方法利用长时间依赖的噪声的子带STF幅度演变,从而掌握了无监督的噪声估计的精神在文献中。具有不同类型的噪声的扬声器和语音 - 独立的实验表明,所提出的方法优于无监督的估计器,它概括到训练集中不存在的噪声类型。

著录项

  • 来源
    《IEEE signal processing letters》 |2019年第6期|918-922|共5页
  • 作者单位

    Inria Grenoble Rhone Alpes F-38330 Montbonnot St Martin France|Univ Grenoble Alpes F-38400 St Martin Dheres France;

    Inria Grenoble Rhone Alpes F-38330 Montbonnot St Martin France|Univ Grenoble Alpes F-38400 St Martin Dheres France;

    Inria Grenoble Rhone Alpes F-38330 Montbonnot St Martin France|Univ Grenoble Alpes Grenoble INP GIPSA Lab F-38400 St Martin Dheres France;

    Inria Grenoble Rhone Alpes F-38330 Montbonnot St Martin France|Univ Grenoble Alpes F-38400 St Martin Dheres France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LSTM; noise PSD; speech enhancement;

    机译:LSTM;噪音PSD;语音增强;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号