首页> 外文期刊>IEEE signal processing letters >Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory
【24h】

Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory

机译:使用长短期记忆的音频噪声功率谱密度估计

获取原文
获取原文并翻译 | 示例

摘要

We propose a method using a long short-term memory (LSTM) network to estimate the noise power spectral density (PSD) of single-channel audio signals represented in the short-time Fourier transform (STFT) domain. An LSTM network common to all frequency bands is trained, which processes each frequency band individually by mapping the noisy STFT magnitude sequence to its corresponding noise PSD sequence. Unlike deep-learning-based speech-enhancement methods, which learn the full-band spectral structure of speech segments, the proposed method exploits the sub-band STFT magnitude evolution of noise with long time dependence, in the spirit of the unsupervised noise estimators described in the literature. Speaker- and speech-independent experiments with different types of noise show that the proposed method outperforms the unsupervised estimators, and it generalizes well to noise types that are not present in the training set.
机译:我们提出了一种使用长短期记忆(LSTM)网络来估计以短时傅立叶变换(STFT)域表示的单通道音频信号的噪声功率谱密度(PSD)的方法。训练了所有频带共有的LSTM网络,该网络通过将嘈杂的STFT幅度序列映射到其相应的噪声PSD序列来分别处理每个频带。与基于深度学习的语音增强方法学习语音段的全频带频谱结构不同,本发明的方法本着描述无监督噪声估计器的精神,利用了具有长时间依赖性的噪声的子带STFT幅度演化。在文学中。具有不同噪声类型的独立于说话人和语音的实验表明,该方法优于无监督估计器,并且可以很好地推广到训练集中不存在的噪声类型。

著录项

  • 来源
    《IEEE signal processing letters》 |2019年第6期|918-922|共5页
  • 作者单位

    Inria Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France|Univ Grenoble Alpes, F-38400 St Martin Dheres, France;

    Inria Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France|Univ Grenoble Alpes, F-38400 St Martin Dheres, France;

    Inria Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France|Univ Grenoble Alpes, Grenoble INP, GIPSA Lab, F-38400 St Martin Dheres, France;

    Inria Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France|Univ Grenoble Alpes, F-38400 St Martin Dheres, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LSTM; noise PSD; speech enhancement;

    机译:LSTM;噪音PSD;语音增强;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号