首页> 外文期刊>IEEE signal processing letters >An Approach to Overcome Occlusions in Visual Tracking: By Occlusion Estimating Agency and Self-Adapting Learning Rate for Filter's Training
【24h】

An Approach to Overcome Occlusions in Visual Tracking: By Occlusion Estimating Agency and Self-Adapting Learning Rate for Filter's Training

机译:一种克服视觉跟踪中的遮挡的方法:通过遮挡估计代理和自适应学习率进行滤镜训练

获取原文
获取原文并翻译 | 示例

摘要

Visual tracking methods have been successful in recent years. Correlation filter (CF) based methods significantly advanced state-of-the-art tracking. The advancement in CF tracking performance is predominantly attributed to powerful features and sophisticated online learning formulations. However, there would be trouble if the tracker indiscriminately learned samples. Particularly, when the target is severely occluded or out-of-view, the tracker will continuously learn the wrong information, resulting target loss in the following frames. In this study, aiming to avoid incorrect training when occlusions occur, we propose a regional color histogram-based occlusion estimating agency (RCHBOEA), which estimates the occlusion level and then instructs, based on the result, the tracker to work in one of two modes: normal or lost. In the normal mode, an occlusion level-based self-adopting learning rate is used for tracker training. In the lost mode, the tracker pauses its training and conducts a search and recapture strategy on a wider searching area. Our method can easily complement CF-based trackers. In our experiments, we employed four CF-based trackers as a baseline: discriminative CFs (DCF), kernelized CFs (KCF), background-aware CFs (BACF), and efficient convolution operators for tracking: hand-crafted feature version (ECO_HC). We performed extensive experiments on the standard benchmarks: VIVID, OTB50, and OTB100. The results demonstrated that combined with RCHBOEA, the trackers achieved a remarkable improvement.
机译:近年来,视觉跟踪方法已经成功。基于相关滤波器(CF)的方法显着提高了现有技术的跟踪水平。 CF跟踪性能的提高主要归功于强大的功能和完善的在线学习公式。但是,如果跟踪器不加选择地学习了样本,将会带来麻烦。特别是当目标被严重遮挡或视线不佳时,跟踪器将不断学习错误的信息,从而在随后的帧中造成目标丢失。在这项研究中,为了避免发生遮挡时进行不正确的训练,我们提出了一个基于区域颜色直方图的遮挡估计机构(RCHBOEA),该机构估计遮挡级别,然后根据结果指示跟踪器以两种方式之一工作模式:正常或丢失。在正常模式下,基于遮挡级别的自学习率用于跟踪器训练。在丢失模式下,跟踪器暂停其训练,并在更宽的搜索范围内执行搜索和重新捕获策略。我们的方法可以轻松补充基于CF的跟踪器。在我们的实验中,我们使用了四个基于CF的跟踪器作为基准:区分性CF(DCF),内核化CF(KCF),背景感知CF(BACF)和有效的卷积运算符进行跟踪:手工制作的特征版本(ECO_HC) 。我们对标准基准进行了广泛的实验:VIVID,OTB50和OTB100。结果表明,与RCHBOEA结合使用,跟踪器取得了显着改善。

著录项

  • 来源
    《IEEE signal processing letters》 |2018年第12期|1890-1894|共5页
  • 作者单位

    Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China;

    Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China;

    Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China;

    Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Target tracking; Tracking; Histograms; Visual systems;

    机译:目标跟踪;跟踪;直方图;视觉系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号