首页> 外文期刊>IEEE signal processing letters >Extracting Colored Noise Statistics in Time Series via Negentropy
【24h】

Extracting Colored Noise Statistics in Time Series via Negentropy

机译:通过负熵提取时间序列中的有色噪声统计信息

获取原文
获取原文并翻译 | 示例

摘要

In the analysis of some specific time series (e.g., Global Positioning System coordinate time series, chaotic time series, human brain imaging), the noise is generally modeled as a sum of a power-law noise and white noise. Some existing softwares estimate the amplitude of the noise components using convex optimization (e.g., Levenberg-Marquadt) applied to a log-likelihood cost function. This work studies a novel cost function based on an approximation of the negentropy. Restricting the study to simulated time series with flicker noise plus white noise, we demonstrate that this cost function is convex. Then, we show thanks to numerical approximations that it is possible to obtain an accurate estimate of the amplitude of the colored noise for various lengths of the time series as long as the ratio between the colored noise amplitude and the white noise is smaller than 0.6. The results demonstrate that with our proposed cost function we can improve the accuracy by around 5% when compared with the log-likelihood ones with simulated time series shorter than 1400 samples.
机译:在分析某些特定时间序列(例如,全球定位系统坐标时间序列,混沌时间序列,人脑成像)时,通常将噪声建模为幂律噪声和白噪声的总和。一些现有软件使用应用于对数似然成本函数的凸优化(例如Levenberg-Marquadt)来估计噪声分量的幅度。这项工作基于负熵的近似值研究了一种新颖的成本函数。将研究限制在具有闪烁噪声和白噪声的模拟时间序列上,我们证明了该成本函数是凸的。然后,由于数值逼近,我们证明,只要色噪声幅度与白噪声之比小于0.6,就有可能获得针对时间长度不同的色噪声幅度的准确估计。结果表明,与模拟时间序列短于1400个样本的对数似然法相比,我们提出的成本函数可以将准确性提高5%左右。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号