首页> 外文期刊>IEEE signal processing letters >Unsupervised Segmentation of Markov Random Fields Corrupted by Nonstationary Noise
【24h】

Unsupervised Segmentation of Markov Random Fields Corrupted by Nonstationary Noise

机译:非平稳噪声破坏的马氏随机场的无监督分割

获取原文
获取原文并翻译 | 示例

摘要

Hidden Markov fields have been widely used in image processing thanks to their ability to characterize spatial information. In such models, the process of interest X is hidden and is to be estimated from an observable process Y . One common way to achieve the associated inference tasks is to define, on one hand, the prior distribution p(x); and on the other hand, the noise distribution p(y/x). While it is commonly established that the prior distribution is given by a Markov random field, the noise distribution is usually given through a set of Gaussian densities; one per each label. Hence, observed pixels belonging to the same class are assumed to be generated by the same Gaussian density. Such assumption turns out, however, to be too restrictive in some situations. For instance, due to light conditions, pixels belonging to a same label may present quite different visual aspects. In this letter, we overcome this drawback by considering an auxiliary field U in accordance with the triplet Markov field formalism. Experimental results on simulated and real images demonstrate the interest of the proposed model with respect to the common hidden Markov fields.
机译:隐马尔可夫场由于具有表征空间信息的能力而被广泛用于图像处理。在这样的模型中,感兴趣的过程X是隐藏的,并且要从可观察的过程Y进行估计。实现相关推理任务的一种常用方法是,一方面定义先验分布p(x);另一方面,定义先验分布p(x)。另一方面,噪声分布p(y / x)。通常确定先验分布是由马尔可夫随机场给出的,而噪声分布通常是通过一组高斯密度给出的。每个标签一个。因此,假设属于相同类别的观察像素是由相同的高斯密度生成的。但是,这种假设在某些情况下过于严格。例如,由于光照条件,属于同一标签的像素可能呈现出完全不同的视觉效果。在这封信中,我们通过考虑根据三重态马尔可夫场形式主义的辅助场U来克服此缺点。在模拟和真实图像上的实验结果证明了该模型对于常见的隐马尔可夫场的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号