首页> 外文期刊>IEEE signal processing letters >Global Variance in Speech Synthesis With Linear Dynamical Models
【24h】

Global Variance in Speech Synthesis With Linear Dynamical Models

机译:线性动力学模型在语音合成中的全局方差

获取原文
获取原文并翻译 | 示例

摘要

Linear Dynamical Models (LDMs) have been used in speech synthesis recently as an alternative to hidden Markov models (HMMs). Among the advantages of LDMs are the ability to capture the dynamics of speech and the achievement of synthesized speech quality similar to HMM-based speech systems on a smaller footprint. However, such as in the HMM case, LDMs produce over-smoothed trajectories of speech parameters, resulting in muffled quality of synthetic speech. Inspired by a similar problem found in HMM-based speech synthesis, where the naturalness of the synthesized speech is greatly improved when the global variance (GV) is compensated, this paper proposes a novel speech parameter generation algorithm that considers GV in LDM-based speech synthesis. Experimental results show that the application of GV during parameter generation significantly improves speech quality.
机译:线性动态模型(LDM)最近已用于语音合成中,以替代隐马尔可夫模型(HMM)。 LDM的优点之一是能够以较小的占位面积捕获语音动态特性,并实现类似于基于HMM的语音系统的合成语音质量。但是,例如在HMM情况下,LDM会产生语音参数过平滑的轨迹,从而导致合成语音质量降低。受到基于HMM的语音合成中发现的类似问题的启发,该问题在补偿全局方差(GV)时大大提高了合成语音的自然性,提出了一种新的语音参数生成算法,该算法考虑了基于LDM的语音中的GV合成。实验结果表明,在参数生成过程中应用GV可以显着提高语音质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号