首页> 外文期刊>IEEE signal processing letters >Distributed Learning With Time Correlated Information
【24h】

Distributed Learning With Time Correlated Information

机译:具有时间相关信息的分布式学习

获取原文
获取原文并翻译 | 示例

摘要

We consider learning an environment by a team of spatially distributed agents, each agent with ongoing local measurements and the team of agents linked by a sparse directed communication network. Agents exploit their local measurements and exchange messages with neighbors in the communication network to quickly learn which environment—from a given finite set of presumed ones—is active. Works on such distributed learning setup assumed that the local measurements taken by the agents are uncorrelated over time, a convenient assumption that leaves, however, many practical setups excluded. In this letter, via modifying a recent distributed learning algorithm, we expand distributed learning to environments in which the time correlation of the local measurements is arbitrary. Since correlated measurements invalidate the previous proofs, we need a new proof guaranteeing that the modified distributed learning algorithm succeeds. Our new proof technique is simple, relies only on basic tools such as the Perron–Frobenius and the ergodic Markov chain theorems, and even covers the case of mismatched assumptions—the active environment is not in the finite set of presumed ones. A numerical example confirms the novel theoretical findings.
机译:我们考虑由一组空间分布的代理组成的环境来学习环境,每个代理具有进行中的本地测量,以及由稀疏定向通信网络链接的一组代理。代理利用其本地度量并与通信网络中的邻居交换消息,以从一组有限的给定假定环境中快速了解哪个环境处于活动状态。在这样的分布式学习设置上进行的工作假设代理所进行的本地测量随时间推移是不相关的,这是一个方便的假设,但是,许多实际设置被排除在外。在这封信中,通过修改最新的分布式学习算法,我们将分布式学习扩展到局部测量的时间相关性是任意的环境。由于相关的度量使先前的证明无效,因此我们需要一个新的证明,以确保改进的分布式学习算法能够成功。我们的新证明技术很简单,仅依赖于Perron–Frobenius和遍历马尔可夫链定理等基本工具,甚至涵盖了不匹配假设的情况—活跃环境不在有限的假定集合中。数值例子证实了新的理论发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号