首页> 外文期刊>IEEE signal processing letters >A Consensus Nonlinear Filter With Measurement Uncertainty in Distributed Sensor Networks
【24h】

A Consensus Nonlinear Filter With Measurement Uncertainty in Distributed Sensor Networks

机译:分布式传感器网络中具有测量不确定度的共识非线性滤波器

获取原文
获取原文并翻译 | 示例

摘要

This letter addresses the consensus-based nonlinear state estimation in distributed sensor networks with unknown measurement noise statistics. The existence of naive nodes and the communication constraint in sensor networks requires a hybrid consensus filtering method. In the frame of consensus filtering, a novel consensus nonlinear filtering approach named variational Bayesian consensus cubature Kalman filter (VB-CCKF) is proposed, in which the CKF is employed to handle the nonlinear state estimation and the VB approximation is adopted to iteratively estimate the sufficient statistics of the measurement noise covariance on each step. Simulations are performed in order to demonstrate the effectiveness of the proposed approach.
机译:这封信解决了未知测量噪声统计数据的分布式传感器网络中基于共识的非线性状态估计问题。朴素节点的存在和传感器网络中的通信约束要求混合共识过滤方法。在共识滤波的框架下,提出了一种新的共识非线性滤波方法,即变分贝叶斯共识培养卡尔曼滤波器(VB-CCKF),其中采用CKF进行非线性状态估计,并采用VB近似来迭代估计非线性状态。每个步骤的测量噪声协方差的足够统计信息。为了证明所提出方法的有效性,进行了仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号