首页> 外文期刊>IEEE signal processing letters >Combining Convolutional and Recurrent Neural Networks for Human Skin Detection
【24h】

Combining Convolutional and Recurrent Neural Networks for Human Skin Detection

机译:结合卷积神经网络和递归神经网络进行人体皮肤检测

获取原文
获取原文并翻译 | 示例

摘要

Skin detection from images, typically used as a preprocessing step, has a wide range of applications such as dermatology diagnostics, human computer interaction designs, and etc. It is a challenging problem due to many factors such as variation in pigment melanin, uneven illumination, and differences in ethnicity geographics. Besides, age and gender introduce additional difficulties to the detection process. It is hard to determine whether a single pixel is skin or nonskin without considering the context. An efficient traditional hand-engineered skin color detection algorithm requires extensive work by domain experts. Recently, deep learning algorithms, especially convolutional neural networks (CNNs), have achieved great success in pixel-wise labeling tasks. However, CNN-based architectures are not sufficient for modeling the relationship between pixels and their neighbors. In this letter, we integrate recurrent neural networks (RNNs) layers into the fully convolutional neural networks (FCNs), and develop an end-to-end network for human skin detection. In particular, FCN layers capture generic local features, while RNN layers model the semantic contextual dependencies in images. Experimental results on the COMPAQ and ECU skin datasets validate the effectiveness of the proposed approach, where RNN layers enhance the discriminative power of skin detection in complex background situations.
机译:从图像进行皮肤检测通常用作预处理步骤,具有广泛的应用,例如皮肤病学诊断,人机交互设计等。由于许多因素,例如色素黑色素变化,照明不均匀,和种族地理差异。此外,年龄和性别给检测过程带来了额外的困难。不考虑上下文就很难确定单个像素是皮肤还是非皮肤。一种有效的传统手工设计的皮肤颜色检测算法需要领域专家进行大量工作。最近,深度学习算法,尤其是卷积神经网络(CNN),在像素级标记任务中取得了巨大的成功。但是,基于CNN的体系结构不足以对像素及其邻居之间的关系进行建模。在这封信中,我们将循环神经网络(RNN)层集成到完全卷积神经网络(FCN)中,并开发了用于人类皮肤检测的端到端网络。特别是,FCN层捕获通用的局部特征,而RNN层对图像中的语义上下文相关性进行建模。在COMPAQ和ECU皮肤数据集上的实验结果验证了该方法的有效性,其中RNN层增强了在复杂背景情况下皮肤检测的判别能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号