首页> 外文会议>International Work-Conference on Artificial Neural Networks >Combining Very Deep Convolutional Neural Networks and Recurrent Neural Networks for Video Classification
【24h】

Combining Very Deep Convolutional Neural Networks and Recurrent Neural Networks for Video Classification

机译:结合非常深的卷积神经网络和递归神经网络进行视频分类

获取原文

摘要

Convolutional Neural Networks (CNNs) have been demonstrated to be able to produce the best performance in image classification problems. Recurrent Neural Networks (RNNs) have been utilized to make use of temporal information for time series classification. The main goal of this paper is to examine how temporal information between frame sequences can be used to improve the performance of video classification using RNNs. Using transfer learning, this paper presents a comparative study of seven video classification network architectures, which utilize either global or local features extracted by VGG-16, a very deep CNN pre-trained for image classification. Hold-out validation has been used to optimize the ratio of dropout and the number of units in the fully-connected layers in the proposed architectures. Each network architecture for video classification has been executed a number of times using different data splits, with the best architecture identified using the independent T-test. Experimental results show that the network architecture using local features extracted by the pre-trained CNN and ConvLSTM for making use of temporal information can achieve the best accuracy in video classification.
机译:卷积神经网络(CNN)已被证明能够在图像分类问题中产生最佳性能。递归神经网络(RNN)已被用于将时间信息用于时间序列分类。本文的主要目的是研究如何使用帧序列之间的时间信息来改善使用RNN的视频分类的性能。本文使用转移学习,对七个视频分类网络体系结构进行了比较研究,这些体系结构利用了VGG-16提取的全局或局部特征,VGG-16是一种经过预先训练的非常深的CNN,用于图像分类。保持验证已被用于优化所提出的体系结构中的丢失率和完全连接层中的单元数。每种用于视频分类的网络体系结构已使用不同的数据拆分执行了多次,其中最佳体系结构是通过独立的T检验确定的。实验结果表明,利用经过预训练的CNN和ConvLSTM提取的局部特征来利用时间信息的网络体系结构可以在视频分类中获得最佳的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号