...
首页> 外文期刊>IEEE Robotics and Automation Letters >Evaluation of Continuous Walking Speed Determination Algorithms and Embedded Sensors for a Powered Knee & Ankle Prosthesis
【24h】

Evaluation of Continuous Walking Speed Determination Algorithms and Embedded Sensors for a Powered Knee & Ankle Prosthesis

机译:用于动力膝关节和踝关节假体的连续步行速度测定算法和嵌入式传感器的评估

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamically altering the parameters for assistance in a lower limb prosthesis is a challenge that depends directly on the ability to estimate gait parameters. Machine learning algorithms present an opportunity to develop methods for continuously determining walking speed in different conditions. Current state-ofthe-art solutions involve using wearable sensors such as IMUs to estimate these parameters. These methods require an entire gait cycle to update the walking speed; this leads to delays when responding to changing speeds and ultimately renders these methods ineffective for adaptation into real-time prosthesis control. In this study, we developed subject dependent and independent machine learning models for rapidly determining walking speed and evaluated on data collected from 6 individuals with unilateral trans femoral amputation walking on our robotic knee/ankle prosthesis. We evaluated the performance of these models across a variety of static walking speeds and dynamic speed trials. Our findings suggest that using machine learning models offers excellent accuracy for both subject dependent and subject independent algorithms (DEP RMSE: 0.014 +/- 0.001 m/s, IND RMSE: 0.070 +/- 0.007 m/s, (p < 0.05), with the advantage of real-time continuous determination at 50 Hz, which allows for good performance when rapidly changing walking speed. We also determine the most effective sensors to use for improving model performance. Our study provides valuable information for determining walking speed more reliably across different users and is robust to dynamic changes experienced in gait.
机译:在较低肢体假体中动态改变参数的参数是一种挑战,这取决于直接估计步态参数的能力。机器学习算法提供了一种开发在不同条件下连续确定步行速度的方法的机会。目前的最先进的解决方案涉及使用诸如IMU的可穿戴传感器来估计这些参数。这些方法需要整个步态周期来更新步行速度;这导致响应变化的速度时导致延迟,并最终使这些方法无效地适应实时假体控制。在这项研究中,我们开发了主题依赖性和独立的机器学习模型,用于快速确定步行速度,并评估从6个个人收集的数据,其中包括单侧反式股骨截肢在我们的机器人膝关节/脚踝假体上行走。我们在各种静态步行速度和动态速度试验中评估了这些模型的性能。我们的研究结果表明,使用机器学习模型为主题依赖和主题独立算法提供了出色的精度(DEP RMSE:0.014 +/- 0.001 M / s,IND RMSE:0.070 +/- 0.007 M / s,(P <0.05),随着50 Hz的实时连续确定的优势,当快速改变步行速度时允许良好的性能。我们还确定用于提高模型性能的最有效的传感器。我们的研究提供了更可靠地确定步行速度的宝贵信息不同的用户,并且是对步态所经历的动态变化很健壮。

著录项

  • 来源
    《IEEE Robotics and Automation Letters》 |2021年第3期|4820-4826|共7页
  • 作者单位

    Georgia Inst Technol Exoskeleton & Intelligent Controls EPIC Lab Atlanta GA 30332 USA|Georgia Inst Technol Woodruff Sch Mech Engn Atlanta GA 30332 USA;

    Georgia Inst Technol Exoskeleton & Intelligent Controls EPIC Lab Atlanta GA 30332 USA|Georgia Inst Technol Woodruff Sch Mech Engn Atlanta GA 30332 USA|Georgia Inst Technol Inst Robot & Intelligent Machines Atlanta GA 30332 USA;

    Georgia Inst Technol Exoskeleton & Intelligent Controls EPIC Lab Atlanta GA 30332 USA|Georgia Inst Technol Woodruff Sch Mech Engn Atlanta GA 30332 USA;

    Georgia Inst Technol Exoskeleton & Intelligent Controls EPIC Lab Atlanta GA 30332 USA|Georgia Inst Technol Woodruff Sch Mech Engn Atlanta GA 30332 USA|Georgia Inst Technol Inst Robot & Intelligent Machines Atlanta GA 30332 USA;

    Georgia Inst Technol Exoskeleton & Intelligent Controls EPIC Lab Atlanta GA 30332 USA|Georgia Inst Technol Woodruff Sch Mech Engn Atlanta GA 30332 USA|Georgia Inst Technol Inst Robot & Intelligent Machines Atlanta GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wearable robotics; human performance augmentation; robotic prosthesis; walking speed determination; transfemoral amputation;

    机译:可穿戴机器人;人类绩效增强;机器人假肢;步行速度决定;变罚截肢;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号