首页> 外文期刊>IEEE Robotics and Automation Letters >Musculoskeletal AutoEncoder: A Unified Online Acquisition Method of Intersensory Networks for State Estimation, Control, and Simulation of Musculoskeletal Humanoids
【24h】

Musculoskeletal AutoEncoder: A Unified Online Acquisition Method of Intersensory Networks for State Estimation, Control, and Simulation of Musculoskeletal Humanoids

机译:Musculoskeletal AutoEncoder:肌肉脑骨骼人型人形样品仪的统一网络的统一在线采集方法,控制和模拟

获取原文
获取原文并翻译 | 示例

摘要

While the musculoskeletal humanoid has various biomimetic benefits, the modeling of its complex structure is difficult, and many learning-based systems have been developed so far. There are various methods, such as control methods using acquired relationships between joints and muscles represented by a data table or neural network, and state estimation methods using Extended Kalman Filter or table search. In this letter, we construct a Musculoskeletal AutoEncoder representing the relationship among joint angles, muscle tensions, and muscle lengths, and propose a unified method of state estimation, control, and simulation of musculoskeletal humanoids using it. By updating the Musculoskeletal AutoEncoder online using the actual robot sensor information, we can continuously conduct more accurate state estimation, control, and simulation than before the online learning. We conducted several experiments using the musculoskeletal humanoid Musashi, and verified the effectiveness of this study.
机译:虽然肌肉骨骼人形具有各种仿生效益,但其复杂结构的建模难以困难,并且到目前为止已经开发了许多基于学习的系统。存在各种方法,例如使用由数据表或神经网络表示的关节和肌肉之间的所获取关系的控制方法,以及使用扩展卡尔曼滤波器或表搜索的状态估计方法。在这封信中,我们构建了一种肌肉骨骼自身阳极,代表关节角度,肌肉紧张局势和肌肉长度之间的关系,并提出了一种使用它的肌肉骨骼人型的状态估计,控制和模拟的统一方法。通过使用实际机器人传感器信息在线更新肌肉骨骼自动探剂,我们可以不断进行比在线学习前更准确的状态估计,控制和模拟。我们使用Musculoskeletal Humanoid Musashi进行了几次实验,并验证了这项研究的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号