首页> 外文期刊>IEEE Robotics and Automation Letters >Cooperative Visual-Inertial Odometry: Analysis of Singularities, Degeneracies and Minimal Cases
【24h】

Cooperative Visual-Inertial Odometry: Analysis of Singularities, Degeneracies and Minimal Cases

机译:合作视觉惯性径流学:奇点分析,退化和最小案例

获取原文
获取原文并翻译 | 示例

摘要

This letter provides an exhaustive analysis of all the singularities and minimal cases in cooperative visual-inertial odometry. Specifically, the case of two agents is analysed. As in the case of a single agent and in the case of other computer vision problems, the key of the analysis is the establishment of an equivalence between the cooperative visual-inertial odometry problem and a Polynomial Equation System (PES). In the case of a single agent, the PES consists of linear equations and a single polynomial of second degree. In the case of two agents, the number of second degree equations becomes three and, also in this case, a complete analytic solution can be obtained. The power of the analytic solution is twofold. From one side, it allows us to determine the state without the need of an initialization. From another side, it provides fundamental insights into all the structural properties of the problem. This letter focuses on this latter issue. Specifically, we obtain all the minimal cases and singularities depending on the number of camera images and the relative trajectory between the agents. The problem, when non singular, can have up to eight distinct solutions. The usefulness of this analysis is illustrated with simulations. In particular, we show quantitatively how the performance of the state estimation worsens near a singularity.
机译:这封信提供了对所有奇点和合作视觉惯性内径内径术中所有奇点和最小案例的详尽分析。具体地,分析了两种试剂的情况。如在单个代理的情况下,在其他计算机视觉问题的情况下,分析的关键是建立协作视觉惯性内径问题和多项式方程系统(PE)之间的等效。在单个代理的情况下,PE由线性方程组成和二次的单个多项式。在两个代理的情况下,第二度方程的数量变为三个,并且在这种情况下也可以获得完整的分析解决方案。分析溶液的力量是双重的。从一侧,它允许我们在不需要初始化的情况下确定状态。从另一方面,它为问题的所有结构性质提供了根本性的见解。这封信重点是后一种问题。具体地,根据摄像机图像的数量和代理之间的相对轨迹,我们获得所有最小的案例和奇点。问题,当非单数,可以有八种不同的解决方案。这种分析的有用性用仿真说明了。特别是,我们的定量表现出状态估计的性能如何在奇点附近恶化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号