首页> 外文期刊>IEEE Robotics and Automation Letters >Unseen Salient Object Discovery for Monocular Robot Vision
【24h】

Unseen Salient Object Discovery for Monocular Robot Vision

机译:无人突出的物体发现单眼机器人视觉

获取原文
获取原文并翻译 | 示例

摘要

A key challenge in robotics is the capability to perceive unseen objects, which can improve a robot's ability to learn from and adapt to its surroundings. One approach is to employ unsupervised, salient object discovery methods, which has shown promise in the computer vision literature. However, most state-of-the-art methods are unsuitable for robotics because they are limited to processing whole video segments before discovering objects, which can constrain real-time perception. To address these gaps, we introduce Unsupervised Foraging of Objects (UFO), a novel, unsupervised, salient object discovery method designed for monocular robot vision. We designed UFO with a parallel discover-prediction paradigm, permitting it to discover arbitrary, salient objects on a frame-by-frame basis, which can help robots to engage in scalable object learning. We compared UFO to the two fastest and most accurate methods for unsupervised salient object discovery (Fast Segmentation and Saliency-Aware Geodesic), and show that UFO 6.5 times faster, achieving state-of-the-art precision, recall, and accuracy. Furthermore our evaluation suggests that UFO is robust to real-world perception challenges encountered by robots, including moving cameras and moving objects, motion blur, and occlusion. It is our goal that this work will be used with other robot perception methods, to design robots that can learn novel object concepts, leading to improved autonomy.
机译:机器人中的一个关键挑战是能够感知看不见的物体,这可以改善机器人的学习能力和适应周围环境的能力。一种方法是采用无监督的突出物体发现方法,这在计算机视觉文献中已经显示了承诺。然而,大多数最先进的方法不适合机器人学,因为它们仅限于发现在发现对象之前的整个视频段,这可以限制实时感知。为了解决这些差距,我们介绍了对物体(UFO)的无人监督觅食,一种设计用于单眼机器人视觉的新颖,无监督,突出的物体发现方法。我们设计了使用并行发现预测范例的UFO,允许其在逐帧基础上发现任意,突出对象,这可以帮助机器人参与可扩展的对象学习。我们将UFO与未经监督的突出物体发现(快速分割和显着感知的GeodeSic)进行比较了两种最快,最准确的方法,并显示了UFO的速度快6.5倍,实现最先进的精度,召回和准确性。此外,我们的评估表明,UFO对机器人遇到的现实感知挑战是强大的,包括移动摄像机和移动物体,运动模糊和闭塞。我们的目标是,这项工作将与其他机器人感知方法一起使用,设计可以学习新型对象概念的机器人,从而提高自治。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号