首页> 外文期刊>IEEE Network >Artificial Intelligence Inspired Multi-Dimensional Traffic Control for Heterogeneous Networks
【24h】

Artificial Intelligence Inspired Multi-Dimensional Traffic Control for Heterogeneous Networks

机译:人工智能启发的异构网络多维流量控制

获取原文
获取原文并翻译 | 示例

摘要

The heterogeneous network is the foundation of next-generation networks. It aims to explore the existing network resources effectively, and providing better QoS for every kind of traffic flow as far as possible. However, the diversity and dynamic nature of heterogeneous networks will bring a huge burden and big data to the network traffic control. Therefore, how to achieve efficient and intelligent network traffic control becomes the key problem of heterogeneous networks. In this article, an AI-inspired traffic control scheme is proposed. In order to realize fine-grained traffic control in heterogeneous networks, multi-dimensional (i.e., inter-layer, intra-layer, and caching and pushing) network traffic control is introduced. It is worth noting that backpropagation in deep recurrent neural networks is applied in the intra-layer such that an intelligent traffic control scheme can be derived efficiently when facing the huge traffic load in heterogeneous networks. Moreover, DBSCAN is adopted in the inter-layer, which supports efficient classification in the inter-layer. In addition, caching and pushing is adopted to make full use of network resources and provide better QoS. Simulation results demonstrate the effectiveness and practicability of the proposed scheme.
机译:异构网络是下一代网络的基础。它旨在有效地探索现有的网络资源,并尽可能为每种流量提供更好的QoS。但是,异构网络的多样性和动态性将给网络流量控制带来巨大的负担和大数据。因此,如何实现高效,智能的网络流量控制成为异构网络的关键问题。在本文中,提出了一种受AI启发的交通控制方案。为了在异构网络中实现细粒度的流量控制,引入了多维(即,层间,层内以及缓存和推送)网络流量控制。值得注意的是,深度递归神经网络中的反向传播应用于层内,以便在面对异构网络中的巨大流量负载时可以有效地导出智能流量控制方案。此外,在层间采用DBSCAN,支持在层间进行有效分类。另外,采用缓存和推送可以充分利用网络资源并提供更好的QoS。仿真结果证明了该方案的有效性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号