首页> 外文期刊>IEEE Network >Living with Artificial Intelligence: A Paradigm Shift toward Future Network Traffic Control
【24h】

Living with Artificial Intelligence: A Paradigm Shift toward Future Network Traffic Control

机译:与人工智能共存:向未来网络流量控制的模式转变

获取原文
获取原文并翻译 | 示例

摘要

Future Internet is expected to meet explosive traffic growth and extremely complex architecture, which tend to make the traditional NTC strategies inefficient and even ineffective. Inspired by the latest breakthroughs of AI and its power to address large-scale and complex difficulties, the network community has begun to consider shifting the NTC paradigm from legacy rule-based to novel AI-based. As an applied inter-discipline, design and implementation are important. Although there have been some preliminary explorations along this frontier, they are either limited by only envisioning the prospects, or too scattered to provide high-level insight into a general methodology. To this end, we start with the domain knowledge relationships of AI and NTC, summarizing a baseline workflow toward deep reinforcement learning, which will be the dominant method for the AI-NTC paradigm. On top of that, we argue that AI-NTC training and running must be carried out in online environments in closed-loop fashion for the purpose of putting ti into practice. A series of challenges and opportunities are discussed from a realistic viewpoint, and a set of new architecture and mechanism to enable the online and closed-loop AI-NTC paradigm are proposed. Hopefully, this work can help the AI community to better understand NTC and the NTC community to better live with AI.
机译:未来的Internet有望满足爆炸性的流量增长和极其复杂的体系结构,这将使传统的NTC策略效率低下甚至无效。受AI的最新突破及其解决大规模复杂难题的能力的启发,网络社区已开始考虑将NTC范式从传统的基于规则的模式转变为基于新颖的AI的模式。作为应用的跨学科,设计和实现很重要。尽管沿该领域已经进行了一些初步的探索,但它们要么仅因设想前景而受到限制,要么由于分散而无法提供对一般方法的高层次见解。为此,我们从AI和NTC的领域知识关系开始,总结了针对深度强化学习的基线工作流,这将是AI-NTC范式的主要方法。最重要的是,我们认为AI-NTC培训和运行必须在在线环境中以闭环方式进行,以便将ti付诸实践。从现实的角度讨论了一系列挑战和机遇,并提出了一套使在线和闭环AI-NTC范例成为可能的新架构和机制。希望这项工作可以帮助AI社区更好地理解NTC,并使NTC社区更好地与AI一起生活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号