首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Detecting Land Cover Change Using an Extended Kalman Filter on MODIS NDVI Time-Series Data
【24h】

Detecting Land Cover Change Using an Extended Kalman Filter on MODIS NDVI Time-Series Data

机译:使用扩展的卡尔曼滤波器在MODIS NDVI时间序列数据上检测土地覆盖变化

获取原文
获取原文并翻译 | 示例

摘要

A method for detecting land cover change using NDVI time-series data derived from 500-m MODIS satellite data is proposed. The algorithm acts as a per-pixel change alarm and takes the NDVI time series of a 3 $times$ 3 grid of MODIS pixels as the input. The NDVI time series for each of these pixels was modeled as a triply (mean, phase, and amplitude) modulated cosine function, and an extended Kalman filter was used to estimate the parameters of the modulated cosine function through time. A spatial comparison between the center pixel of the 3 $times$ 3 grid and each of its neighboring pixel's mean and amplitude parameter sequence was done to calculate a change metric which yields a change or no-change decision after thresholding. Although the development of new settlements is the most prevalent form of land cover change in South Africa, it is rarely mapped, and known examples amount to a limited number of changed MODIS pixels. Therefore, simulated change data were generated and used for the preliminary optimization of the change detection method. After optimization, the method was evaluated on examples of known land cover change in the study area, and experimental results indicate an 89% change detection accuracy while a traditional annual NDVI differencing method could only achieve a 63% change detection accuracy.
机译:提出了一种利用从500米MODIS卫星数据中提取的NDVI时间序列数据检测土地覆盖变化的方法。该算法充当每像素变化警报,并以3 x 3格MODIS像素的NDVI时间序列作为输入。将这些像素中每个像素的NDVI时间序列建模为三重(均值,相位和幅度)调制余弦函数,并使用扩展的卡尔曼滤波器估算随时间变化的调制余弦函数的参数。在3×3网格的中心像素与其相邻像素的均值和幅度参数序列之间进行空间比较,以计算变化量度,该变化量度在阈值之后产生变化或不变化的决定。尽管新定居点的开发是南非土地覆被变化的最普遍形式,但很少被绘制出来,已知的例子仅是有限数量的MODIS像素变化。因此,生成了模拟变更数据并将其用于变更检测方法的初步优化。经过优化后,对该方法进行了研究区域已知土地覆盖变化示例的评估,实验结果表明,该方法的检测精度为89%,而传统的年度NDVI差分方法只能实现63%的变化检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号