首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model
【24h】

Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model

机译:分层马尔可夫随机场模型中基于Copulas和纹理的城市超高分辨率SAR图像分类

获取原文
获取原文并翻译 | 示例

摘要

This letter addresses the problem of classifying synthetic aperture radar (SAR) images of urban areas by using a supervised Bayesian classification method via a contextual hierarchical approach. We develop a bivariate copula-based statistical model that combines amplitude SAR data and textural information, which is then plugged into a hierarchical Markov random field model. The contribution of this letter is thus the development of a novel hierarchical classification approach that uses a quad-tree model based on wavelet decomposition and an innovative statistical model. The performance of the developed approach is illustrated on a high-resolution satellite SAR image of urban areas.
机译:这封信解决了使用监督贝叶斯分类方法通过上下文分层方法对城市地区的合成孔径雷达(SAR)图像进行分类的问题。我们开发了一个基于双变量copula的统计模型,该模型结合了幅度SAR数据和纹理信息,然后将其插入到层次马尔可夫随机场模型中。因此,这封信的贡献在于开发了一种新颖的分层分类方法,该方法使用了基于小波分解的四叉树模型和创新的统计模型。在城市地区的高分辨率卫星SAR图像上说明了所开发方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号