首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Improved Classification Accuracy Based on the Output-Level Fusion of High-Resolution Satellite Images and Airborne LiDAR Data in Urban Area
【24h】

Improved Classification Accuracy Based on the Output-Level Fusion of High-Resolution Satellite Images and Airborne LiDAR Data in Urban Area

机译:基于高分辨率卫星图像和机载LiDAR数据的输出级融合的改进分类精度

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a method based on the fusion of high-resolution satellite images and airborne light detection and ranging (LiDAR) data for improving classification accuracy. Based on output-level fusion during classification, the proposed method utilizes a three-step process to minimize the misclassification of buildings and road objects. First, elevated road areas are detected in ground points, which are extracted for the generation of a digital terrain model based on statistical values. Second, building information is extracted from a satellite image through the output-level fusion of various data results. Third, supervised classification is conducted using a support vector machine for areas that lack elevated roads and buildings. We evaluated the proposed method by comparing it with a pixel-based method and analyzing experimental WorldView-2 images and airborne LiDAR data. We conducted a visual interpretation and quantitative accuracy assessment. The overall accuracy and kappa coefficient of the proposed method were 90.91% and 0.892, respectively. These results demonstrated an improvement in the overall accuracy and kappa coefficient by 11.27 percentage points and 0.135, respectively, compared with the pixel-based method. The results confirmed that our proposed method has significant potential for classifying urban environments using high-resolution satellite imagery and airborne LiDAR data.
机译:这封信提出了一种基于高分辨率卫星图像和机载光检测与测距(LiDAR)数据融合的方法,以提高分类精度。基于分类时的输出级融合,该方法利用三步过程将建筑物和道路物体的错误分类最小化。首先,在地面点检测高架道路区域,提取这些地面区域以基于统计值生成数字地形模型。其次,通过各种数据结果的输出级融合,从卫星图像中提取建筑物信息。第三,使用支持向量机对缺乏高架道路和建筑物的区域进行监督分类。我们通过与基于像素的方法进行比较,并分析了实验性的WorldView-2图像和机载LiDAR数据,对所提出的方法进行了评估。我们进行了视觉解释和定量准确性评估。所提方法的整体准确度和kappa系数分别为90.91%和0.892。这些结果表明,与基于像素的方法相比,总体精度和kappa系数分别提高了11.27个百分点和0.135个百分点。结果证实,我们提出的方法具有使用高分辨率卫星图像和机载LiDAR数据对城市环境进行分类的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号