首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Partial Randomness Hashing for Large-Scale Remote Sensing Image Retrieval
【24h】

Partial Randomness Hashing for Large-Scale Remote Sensing Image Retrieval

机译:大规模遥感图像检索的局部随机散列

获取原文
获取原文并翻译 | 示例

摘要

With the rapid progress of satellite and aerial vehicle technologies, large-scale remote sensing (RS) image retrieval has recently become an important research issue in geosciences. Hashing-based searching approaches have been widely employed in content-based image retrieval tasks. However, most hash schemes compromise between learning efficiency and retrieval accuracy, and can thus barely satisfy the precise requirements in RS data analysis. To address these shortcomings, we introduce a partial randomness scheme for learning hash functions, which is referred to as partial randomness hashing (PRH). Specifically, for constructing hash functions, a part of model parameter values are randomly generated and the remaining ones are trained based on RS images. The randomness enables an efficient hash function construction and the trained model parameters encode characteristics from RS images. The coplay between random and trained model parameters results in both efficient and effective learning scheme for constructing hash functions. Experiments on two large public RS image data sets have shown that our PRH method outperforms state of the arts in terms of both learning efficiency and retrieval accuracy.
机译:随着卫星和飞行器技术的飞速发展,大规模遥感(RS)图像检索已成为地球科学领域的重要研究课题。基于哈希的搜索方法已广泛用于基于内容的图像检索任务中。但是,大多数哈希方案在学习效率和检索精度之间折衷,因此几乎不能满足RS数据分析中的精确要求。为了解决这些缺点,我们引入了一种用于学习哈希函数的部分随机性方案,称为部分随机性哈希(PRH)。具体地,为了构造散列函数,随机地生成一部分模型参数值,并且基于RS图像来训练其余的模型参数值。随机性使得有效的哈希函数构造成为可能,并且训练后的模型参数对来自RS图像的特征进行编码。随机模型参数和训练模型参数之间的共同作用导致了构建哈希函数的高效学习方案。在两个大型公共RS图像数据集上进行的实验表明,我们的PRH方法在学习效率和检索准确性方面都优于最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号