首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >SAR Image Change Detection via Spatial Metric Learning With an Improved Mahalanobis Distance
【24h】

SAR Image Change Detection via Spatial Metric Learning With an Improved Mahalanobis Distance

机译:SAR图像通过空间度量学习改变检测,具有改进的Mahalanobis距离

获取原文
获取原文并翻译 | 示例

摘要

The log-ratio (LR) operator has been widely employed to generate the difference image for synthetic aperture radar (SAR) image change detection. However, the difference image generated by this pixelwise operator can be subject to SAR images speckle and unavoidable registration errors between bitemporal SAR images. In this letter, we proposed a spatial metric learning method to obtain a difference image that is more robust to the speckle by learning a metric from a set of constraint pairs. In the proposed method, the spatial context is considered in constructing constraint pairs, each of which consists of patches in the same location of bitemporal SAR images. Then, a semidefinite positive metric matrix M can be obtained by the optimization with the max-margin criterion. Finally, we verify our proposed method on four challenging data sets of bitemporal SAR images. Experimental results demonstrate that the difference map obtained by our proposed method outperforms than other state-of-the-art methods.
机译:Log-比率(LR)操作员已广泛用于生成合成孔径雷达(SAR)图像变化检测的差异图像。然而,由该像素运算符生成的差异图像可以受到在比克斯SAR图像之间的SAR图像散斑和不可避免的登记误差。在这封信中,我们提出了一种空间度量学习方法,以通过从一组约束对学习度量来获得对斑点更强大的差异图像。在所提出的方法中,在构建约束对中考虑空间上下文,每个结构包括在符号SAR图像的同一位置中的贴片。然后,可以通过利用MAX-MARIGG标准来获得半纤维正度量矩阵M.最后,我们验证了四个具有挑战性的衡量标准SAR图像数据集的方法。实验结果表明,我们所提出的方法优于其他最先进的方法而获得的差异图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号