首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Improving Recognition of Complex Aerial Scenes Using a Deep Weakly Supervised Learning Paradigm
【24h】

Improving Recognition of Complex Aerial Scenes Using a Deep Weakly Supervised Learning Paradigm

机译:使用深度弱监督学习范例改善复杂空中场景的识别

获取原文
获取原文并翻译 | 示例

摘要

Categorizing highly complex aerial scenes is quite strenuous due to the presence of detailed information with a large number of distinctive objects. Recognition happens by first deriving a joint relationship within all these distinguishing objects, distilling finally to some meaningful knowledge that is subsequently employed to label the scene. However, something intriguing is whether all this captured information is actually relevant to classify such a complex scene? What if some objects just create uncertainty with respect to the target label, thereby causing ambiguity in the decision-making? In this letter, we investigate these questions and analyze as to which regions in an aerial scene are the most relevant and are inhibiting in determining the image label accurately. However, for such aerial scene classification (ASC) task, employing supervised knowledge of experts to annotate these discriminative regions is quite costly and laborious, especially when the data set is huge. To this end, we propose a deep weakly supervised learning (DWSL) technique. Our classification-trained convolutional neural network learns to identify discriminative region localizations in an aerial scenesolelyby utilizing image labels. Using the DWSL model, we significantly improve the recognition accuracies of highly complex scenes, thus validating that extra information causes uncertainty in decision-making. Moreover, our DWSL methodology can also be leveraged as a novel tool for concrete visualization of the most informative regions relevant to accurately classify an aerial scene. Finally, our proposed framework yields a state-of-the-art performance on the existing ASC data sets.
机译:由于存在大量带有独特对象的详细信息,因此对高度复杂的空中场景进行分类非常费力。识别是通过首先在所有这些可区分的对象中派生一个联合关系而进行的,最终提取出一些有意义的知识,这些知识随后被用来标记场景。但是,令人感兴趣的是,所有这些捕获的信息是否实际上与对如此复杂的场景进行分类相关?如果某些对象只是相对于目标标签产生了不确定性,从而在决策中造成歧义怎么办?在这封信中,我们调查了这些问题,并分析了空中场景中哪些区域最相关,并且无法准确确定图像标签。但是,对于这样的空中场景分类(ASC)任务,使用专家的监督知识来标注这些区分区域是非常昂贵且费力的,尤其是在数据集庞大时。为此,我们提出了一种深层的弱监督学习(DWSL)技术。我们的分类训练卷积神经网络学会识别空中场景中的可辨别区域定位 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “只能使用图片标签http://www.w3.org/1999/xlink">。使用DWSL模型,我们显着提高了高度复杂场景的识别准确性,从而验证了额外的信息会导致决策中的不确定性。此外,我们的DWSL方法还可以作为一种新颖的工具,用于对可视性最高的区域进行具体可视化,从而准确地对空中场景进行分类。最后,我们提出的框架在现有的ASC数据集上产生了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号