首页> 外文期刊>Networking, IEEE/ACM Transactions on >ABC: Adaptive Binary Cuttings for Multidimensional Packet Classification
【24h】

ABC: Adaptive Binary Cuttings for Multidimensional Packet Classification

机译:ABC:用于多维数据包分类的自适应二进制插值

获取原文
获取原文并翻译 | 示例

摘要

Decision tree-based packet classification algorithms are easy to implement and allow the tradeoff between storage and throughput. However, the memory consumption of these algorithms remains quite high when high throughput is required. The Adaptive Binary Cuttings (ABC) algorithm exploits another degree of freedom to make the decision tree adapt to the geometric distribution of the filters. The three variations of the adaptive cutting procedure produce a set of different-sized cuts at each decision step, with the goal to balance the distribution of filters and to reduce the filter duplication effect. The ABC algorithm uses stronger and more straightforward criteria for decision tree construction. Coupled with an efficient node encoding scheme, it enables a smaller, shorter, and well-balanced decision tree. The hardware-oriented implementation of each variation is proposed and evaluated extensively to demonstrate its scalability and sensitivity to different configurations. The results show that the ABC algorithm significantly outperforms the other decision tree-based algorithms. It can sustain more than 10-Gb/s throughput and is the only algorithm among the existing well-known packet classification algorithms that can compete with TCAMs in terms of the storage efficiency.
机译:基于决策树的数据包分类算法易于实现,并且可以在存储量和吞吐量之间进行权衡。但是,当需要高吞吐量时,这些算法的内存消耗仍然很高。自适应二进制切割(ABC)算法利用另一种自由度,使决策树适应过滤器的几何分布。自适应裁切过程的三个变体在每个决策步骤产生一组不同大小的裁切,目的是平衡滤镜的分布并减少滤镜的重复效果。 ABC算法使用更强,更直接的准则来构建决策树。结合有效的节点编码方案,它可以实现更小,更短且平衡良好的决策树。提出并评估了每种变体的面向硬件的实现,以证明其可扩展性和对不同配置的敏感性。结果表明,ABC算法明显优于其他基于决策树的算法。它可以维持10 Gb / s以上的吞吐量,并且是现有的知名数据包分类算法中唯一可以与TCAM竞争的算法,在存储效率方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号