首页> 美国卫生研究院文献>Frontiers in Neuroscience >Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity
【2h】

Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity

机译:树突状神经元的二元突触自适应网络利用结构可塑性进行多类分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best “k” out of “d” inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We show that our system can achieve classification accuracy within 1 − 2% of other reported spike-based classifiers while using much less synaptic resources (only 7%) compared to that used by other methods. Further, an ensemble classifier created with adaptively learned sizes can attain accuracy of 96.4% which is at par with the best reported performance of spike-based classifiers. Moreover, the proposed method achieves this by using about 20% of the synapses used by other spike algorithms. We also present results of applying our algorithm to classify the MNIST-DVS dataset collected from a real spike-based image sensor and show results comparable to the best reported ones (88.1% accuracy). For VLSI implementations, we show that the reduced synaptic memory can save upto 4X area compared to conventional crossbar topologies. Finally, we also present a biologically realistic spike-based version for calculating the correlations required by the structural learning rule and demonstrate the correspondence between the rate-based and spike-based methods of learning.
机译:高效节能的神经形态设备的开发提出了设计尖峰模式分类算法的挑战,该算法可以在低精度硬件上实现,还可以实现最新的性能。在迎接这一挑战的过程中,我们提出了一种模式分类模型,该模型使用稀疏连接矩阵并利用非线性树突处理机制来实现高分类精度。提出了一种用于多类分类的基于速率的结构学习规则,该规则通过从“ d”个输入中选择最佳的“ k”以在每个树突分支上建立连接来修改二进制突触连接的连接矩阵(k d)。由于学习仅会修改连接性,因此该模型非常适合使用地址事件表示(AER)在神经形态系统中实施。我们开发了一种集成方法,该方法结合了多个树状分类器以实现对单个分类器的增强概括。我们有两个主要发现:(1)我们的结果表明,使用包含适量树突的分类器创建的集合比感知器和复杂树突树的集合效果更好。 (2)为了确定特定分类问题所需的适度树突,提出了两步法。首先,提出了一种自适应方法,该方法可缩放每个类别的神经元树突树的相对大小。它通过将具有固定数量的突触的树突逐渐添加到网络中来工作,从而根据给定问题的复杂性分配突触资源。第二步,使用理论能力计算将每个神经元树突树转换为其最佳拓扑,在该拓扑中,为每个类别的树突分配不同数量的突触。该模型的性能是根据基准MNIST数据集中的手写数字分类进行评估的,并与其他峰值分类器进行比较。我们表明,与其他方法相比,我们的系统可以在其他报告的基于尖峰的分类器的1-2%范围内实现分类精度,同时使用的突触资源要少得多(仅7%)。此外,使用自适应学习的大小创建的集成分类器可达到96.4%的准确度,与基于尖峰的分类器的最佳报告性能相当。而且,提出的方法通过使用其他尖峰算法使用的大约20%的突触来实现此目的。我们还介绍了应用我们的算法对从基于真实峰值的图像传感器收集的MNIST-DVS数据集进行分类的结果,并显示了可与最佳报道的结果相媲美的结果(准确度为88.1%)。对于VLSI实现,我们证明与传统的交叉开关拓扑相比,减少的突触内存可节省多达4倍的面积。最后,我们还提出了一种生物学上可行的基于尖峰的版本,用于计算结构学习规则所需的相关性,并演示了基于速率和基于尖峰的学习方法之间的对应关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号