...
首页> 外文期刊>PLoS Computational Biology >The gradient clusteron: A model neuron that learns to solve classification tasks via dendritic nonlinearities, structural plasticity, and gradient descent
【24h】

The gradient clusteron: A model neuron that learns to solve classification tasks via dendritic nonlinearities, structural plasticity, and gradient descent

机译:渐变群集:一个模型神经元,用于通过树突非线性,结构可塑性和梯度下降来解决分类任务

获取原文
           

摘要

Synaptic clustering on neuronal dendrites has been hypothesized to play an important role in implementing pattern recognition. Neighboring synapses on a dendritic branch can interact in a synergistic, cooperative manner via nonlinear voltage-dependent mechanisms, such as NMDA receptors. Inspired by the NMDA receptor, the single-branch clusteron learning algorithm takes advantage of location-dependent multiplicative nonlinearities to solve classification tasks by randomly shuffling the locations of “under-performing” synapses on a model dendrite during learning (“structural plasticity”), eventually resulting in synapses with correlated activity being placed next to each other on the dendrite. We propose an alternative model, the gradient clusteron, or G-clusteron, which uses an analytically-derived gradient descent rule where synapses are "attracted to" or "repelled from" each other in an inputand location-dependent manner. We demonstrate the classification ability of this algorithm by testing it on the MNIST handwritten digit dataset and show that, when using a softmax activation function, the accuracy of the G-clusteron on the all-versus-all MNIST task (~85%) approaches that of logistic regression (~93%). In addition to the location update rule, we also derive a learning rule for the synaptic weights of the G-clusteron (“functional plasticity”) and show that a G-clusteron that utilizes the weight update rule can achieve ~89% accuracy on the MNIST task. We also show that a G-clusteron with both the weight and location update rules can learn to solve the XOR problem from arbitrary initial conditions.
机译:在神经元树突上的突触聚类已经假设在实施模式识别方面发挥着重要作用。树枝状分支上的相邻突触可以通过非线性电压依赖性机制(例如NMDA受体)以协同效应的方式相互作用。由NMDA受体的启发,单分支机构学习算法利用位置相关的乘法非线性来解决在学习期间模型树枝状的“欠下”突触的“不足”突触的位置来解决分类任务的求解任务。最终导致具有相关活动的突触在树突上彼此相邻地放置。我们提出了一种替代模型,梯度群集或G-Clusteron,它使用分析衍生的梯度下降规则,其中突触以inputand地点的方式“吸引到”或“从”彼此中的“从”彼此拒绝。我们通过在MNIST手写数字数据集上测试了该算法的分类能力,并在使用SoftMax激活功能时,G-Clusteron对全部与所有MNIST任务的准确性(〜85%)方法Logistic回归的(〜93%)。除了位置更新规则之外,我们还导出了G-Clusteron(“功能塑性”)的突触权重的学习规则,并显示利用权重更新规则的G-Clusteron可以实现〜89%的精度mnist任务。我们还表明,具有权重和位置更新规则的G-Clusteron可以学习从任意初始条件中解决XOR问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号