首页> 外文期刊>IEEE/ACM Transactions on Networking >Hamming Metric Multi-Granularity Locality-Sensitive Bloom Filter
【24h】

Hamming Metric Multi-Granularity Locality-Sensitive Bloom Filter

机译:汉明度量多粒度局部敏感布隆过滤器

获取原文
获取原文并翻译 | 示例

摘要

A Bloom filter is a type of space-efficient data structure that supports membership tests in numerous network applications. Recently, emerging applications require an approximate membership test (AMT) rather than conventional (exact-matching) membership test. Some AMT problems can be effectively solved by using a locality-sensitive hashing (LSH) based Bloom filter. However, existing work cannot handle changing Hamming distances. In this paper, we present a new Hamming metric locality-sensitive Bloom filter (HLBF) to tackle the challenge. Each object of the data set is hashed by bit sampling LSH functions and encoded into a standard Bloom filter in the HLBF structure. To support AMTs with different given Hamming distances, we propose a multi-granularity test algorithm (called the M-HLBF) based on the HLBF and virtual objects which are created from the given test object. Theoretical analyses show that false positive rates and false negative rates can be controlled within low levels. To further accelerate the processing of an AMT, we also illustrate a hardware implementation. Extensive experimental results demonstrate that our method is quite promising in achieving high efficiency and flexibility for processing AMTs with different granularities/distances.
机译:布隆过滤器是一种节省空间的数据结构,可在众多网络应用程序中支持成员资格测试。最近,新兴的应用程序需要一个近似的隶属度测试(AMT),而不是传统的(精确匹配)隶属度测试。通过使用基于位置敏感的哈希(LSH)的Bloom过滤器,可以有效解决一些AMT问题。但是,现有的工作无法处理不断变化的汉明距离。在本文中,我们提出了一种新的汉明度量局部敏感布隆滤波器(HLBF),以应对这一挑战。数据集的每个对象都通过位采样LSH函数进行哈希处理,并编码为HLBF结构中的标准Bloom过滤器。为了支持具有不同给定汉明距离的AMT,我们基于HLBF和从给定测试对象创建的虚拟对象,提出了一种多粒度测试算法(称为M-HLBF)。理论分析表明,误报率和误报率可以控制在较低水平。为了进一步加速AMT的处理,我们还说明了一种硬件实现。大量的实验结果表明,我们的方法在处理不同粒度/距离的AMT方面具有很高的效率和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号