首页> 外文期刊>IEEE/ACM Transactions on Networking >Application-Oblivious L7 Parsing Using Recurrent Neural Networks
【24h】

Application-Oblivious L7 Parsing Using Recurrent Neural Networks

机译:使用经常性神经网络解析应用 - 忽略的L7解析

获取原文
获取原文并翻译 | 示例

摘要

Extracting fields from layer 7 protocols such as HTTP, known as L7 parsing, is the key to many critical network applications. However, existing L7 parsing techniques center around protocol specifications, thereby incurring large human efforts in specifying data format and high computational/memory costs that poorly scale with the explosive number of L7 protocols. To this end, this paper introduces a new framework named content-based L7 parsing, where the content instead of the format becomes the first class citizen. Under this framework, users only need to label what content they are interested in, and the parser learns an extraction model from the users' labeling behaviors. Since the parser is specification-independent, both the human effort and computational/memory costs can be dramatically reduced. To realize content-based L7 parsing, we propose REPLAY which builds on recurrent neural network (RNN) and addresses a series of technical challenges like large labeling overhead and slow parsing speed. We prototype REPLAY on GPUs, and show it can achieve a precision of 98% and a recall of 97%, with a throughput as high as 12Gbps for diverse extraction tasks.
机译:从第7层协议中提取字段,例如HTTP,称为L7解析,是许多关键网络应用的关键。然而,现有的L7解析技术围绕协议规范,从而在指定数据格式和高计算/内存成本中产生大量的人力努力,这与L7协议的爆炸数量不当。为此,本文介绍了一个名为基于内容的L7解析的新框架,其中内容而不是格式成为第一类公民。在此框架下,用户只需要标记他们对其感兴趣的内容,并且解析器从用户的标签行为中了解提取模型。由于解析器是独立规范的,因此可以大大减少人力努力和计算/内存成本。为了实现基于内容的L7解析,我们提出了在经常性神经网络(RNN)上建立的重播,并解决了一系列技术挑战,如大标签开销和缓慢解析速度。我们在GPU上原型重播,并显示它可以实现98%的精度,并召回97%,具有高达12Gbps的吞吐量,以实现各种提取任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号