首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Faster Algorithms for Optimal Multiple Sequence Alignment Based on Pairwise Comparisons
【24h】

Faster Algorithms for Optimal Multiple Sequence Alignment Based on Pairwise Comparisons

机译:基于成对比较的最优多序列比对的更快算法

获取原文
获取原文并翻译 | 示例

摘要

Multiple sequence alignment (MSA) is one of the most fundamental problems in computational molecular biology. The running time of the best known scheme for finding an optimal alignment, based on dynamic programming, increases exponentially with the number of input sequences. Hence, many heuristics were suggested for the problem. We consider a version of the MSA problem where the goal is to find an optimal alignment in which matches are restricted to positions in predefined matching segments. We present several techniques for making the dynamic programming algorithm more efficient, while still finding an optimal solution under these restrictions. We prove that it suffices to find an optimal alignment of the predefined sequence segments, rather than single letters, thereby reducing the input size and thus improving the running time. We also identify "shortcuts" that expedite the dynamic programming scheme. Empirical study shows that, taken together, these observations lead to an improved running time over the basic dynamic programming algorithm by 4 to 12 orders of magnitude, while still obtaining an optimal solution. Under the additional assumption that matches between segments are transitive, we further improve the running time for finding the optimal solution by restricting the search space of the dynamic programming algorithm
机译:多序列比对(MSA)是计算分子生物学中最基本的问题之一。基于动态编程,用于找到最佳比对的最著名方案的运行时间随输入序列的数量呈指数增长。因此,针对该问题提出了许多启发式的建议。我们考虑MSA问题的一种版本,其目的是找到最佳匹配,其中将匹配限制为预定义匹配段中的位置。我们提出了几种使动态规划算法更有效的技术,同时仍在这些限制下找到了最佳解决方案。我们证明,找到预定义序列段而不是单个字母的最佳比对就足够了,从而减小了输入大小,从而缩短了运行时间。我们还确定了加快动态编程方案的“捷径”。实证研究表明,综合起来,这些观察结果使运行时间比基本动态编程算法缩短了4到12个数量级,同时仍获得了最佳解决方案。在段间匹配是可传递的附加假设下,我们通过限制动态规划算法的搜索空间,进一步缩短了寻找最佳解的运行时间

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号