首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Algorithms for Efficient Near-Perfect Phylogenetic Tree Reconstruction in Theory and Practice
【24h】

Algorithms for Efficient Near-Perfect Phylogenetic Tree Reconstruction in Theory and Practice

机译:理论和实践中有效近乎完美的进化树重建算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of reconstructing near-perfect phylogenetic trees using binary character states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree, yielding an algorithm for binary character states that is computationally efficient but not robust to imperfections in real data. A near-perfect phylogeny relaxes the perfect phylogeny assumption by allowing at most a constant number of additional mutations. We develop two algorithms for constructing optimal near-perfect phylogenies and provide empirical evidence of their performance. The first simple algorithm is fixed parameter tractable when the number of additional mutations and the number of characters that share four gametes with some other character are constants. The second, more involved algorithm for the problem is fixed parameter tractable when only the number of additional mutations is fixed. We have implemented both algorithms and shown them to be extremely efficient in practice on biologically significant data sets. This work proves the BNPP problem fixed parameter tractable and provides the first practical phylogenetic tree reconstruction algorithms that find guaranteed optimal solutions while being easily implemented and computationally feasible for data sets of biologically meaningful size and complexity.
机译:我们考虑使用二进制字符状态(称为BNPP)重建近乎完美的系统树的问题。完美的系统发育假设每个字符在进化树中最多变异一次,从而产生了一种用于二进制字符状态的算法,该算法在计算上是有效的,但对真实数据中的缺陷不具有鲁棒性。近乎完美的系统发育通过允许最多恒定数量的其他突变来放松完美的系统发育假设。我们开发了两种算法来构建最佳的近乎完美的系统发育,并提供其性能的经验证据。当其他突变的数量和与某些其他角色共享四个配子的角色的数量为常数时,第一种简单算法是固定参数可处理的。当仅固定其​​他突变数时,第二个更复杂的算法是固定参数可处理的。我们已经实现了这两种算法,并显示出它们在具有生物学意义的数据集上的实践非常有效。这项工作证明了BNPP问题的固定参数易于处理,并提供了第一个实用的系统树重构算法,该算法可找到有保证的最优解,同时对于生物学上有意义的大小和复杂性的数据集,易于实施且在计算上可行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号