首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Dynamical Systems for Discovering Protein Complexes and Functional Modules from Biological Networks
【24h】

Dynamical Systems for Discovering Protein Complexes and Functional Modules from Biological Networks

机译:从生物网络发现蛋白质复合物和功能模块的动力学系统

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in high throughput experiments and annotations via published literature have provided a wealth of interaction maps of several biomolecular networks, including metabolic, protein-protein, and protein-DNA interaction networks. The architecture of these molecular networks reveals important principles of cellular organization and molecular functions. Analyzing such networks, i.e., discovering dense regions in the network, is an important way to identify protein complexes and functional modules. This task has been formulated as the problem of finding heavy subgraphs, the heaviest k-subgraph problem (k-HSP), which itself is NP-hard. However, any method based on the k-HSP requires the parameter k and an exact solution of k-HSP may still end up as a "spurious" heavy subgraph, thus reducing its practicability in analyzing large scale biological networks. We proposed a new formulation, called the rank-HSP, and two dynamical systems to approximate its results. In addition, a novel metric, called the standard deviation and mean ratio (SMR), is proposed for use in "spurious" heavy subgraphs to automate the discovery by setting a fixed threshold. Empirical results on both the simulated graphs and biological networks have demonstrated the efficiency and effectiveness of our proposal
机译:高通量实验和通过公开文献进行注解的最新进展提供了许多生物分子网络的相互作用图谱,包括代谢,蛋白质-蛋白质和蛋白质-DNA相互作用网络。这些分子网络的结构揭示了细胞组织和分子功能的重要原理。分析这样的网络,即发现网络中的密集区域,是识别蛋白质复合物和功能模块的重要方法。这个任务已被表述为寻找重子图的问题,最重的k子图问题(k-HSP),其本身是NP难的。但是,任何基于k-HSP的方法都需要参数k,并且k-HSP的精确解可能仍然会变成“虚假”的重子图,从而降低了其在分析大规模生物网络中的实用性。我们提出了一种新的公式,称为等级HSP,以及两个动力学系统来近似其结果。此外,提出了一种新的度量标准,称为标准偏差和均值比(SMR),可用于“虚假”重子图中以通过设置固定阈值来自动进行发现。模拟图和生物网络上的经验结果都证明了我们建议的有效性和有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号