首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Model Reduction of Multiscale Chemical Langevin Equations: A Numerical Case Study
【24h】

Model Reduction of Multiscale Chemical Langevin Equations: A Numerical Case Study

机译:多尺度化学朗格文方程的模型简化:数值案例研究

获取原文
获取原文并翻译 | 示例

摘要

Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.
机译:对这些系统进行建模时,必须仔细考虑生物反应网络的两个非常重要的特征。首先,模型必须考虑系统的固有概率性质,而不是热力学极限。通常,无法使用传统的连续确定性模型对生物系统进行建模。其次,模型必须考虑到在生物现象中观察到的不同时标范围,例如慢转录事件和快速二聚反应。在过去的十年中,已经在开发随机化学动力学模型以捕获生物分子系统动力学方面以及在开发能够处理刚度的稳健的多尺度算法上进行了巨大的努力。在本文中,重点是由刚性化学Langevin方程(即刚性随机微分方程)控制的反应集动力学。这些对于建模特别具有挑战性的系统,需要极小的集成步长。我们描述并说明了化学朗格文方程的半解析还原框架的应用,该框架可显着提高计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号