首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Multistage Gene Normalization and SVM-Based Ranking for Protein Interactor Extraction in Full-Text Articles
【24h】

Multistage Gene Normalization and SVM-Based Ranking for Protein Interactor Extraction in Full-Text Articles

机译:全文文章中蛋白质相互作用物提取的多阶段基因归一化和基于SVM的排名

获取原文
获取原文并翻译 | 示例

摘要

The interactor normalization task (INT) is to identify genes that play the interactor role in protein-protein interactions (PPIs), to map these genes to unique IDs, and to rank them according to their normalized confidence. INT has two subtasks: gene normalization (GN) and interactor ranking. The main difficulties of INT GN are identifying genes across species and using full papers instead of abstracts. To tackle these problems, we developed a multistage GN algorithm and a ranking method, which exploit information in different parts of a paper. Our system achieved a promising AUC of 0.43471. Using the multistage GN algorithm, we have been able to improve system performance (AUC) by 1.719 percent compared to a one-stage GN algorithm. Our experimental results also show that with full text, versus abstract only, INT AUC performance was 22.6 percent higher.
机译:相互作用者归一化任务(INT)是识别在蛋白质-蛋白质相互作用(PPI)中扮演相互作用者作用的基因,将这些基因映射到唯一的ID,并根据它们的归一化置信度对其进行排名。 INT有两个子任务:基因归一化(GN)和交互因子排名。 INT GN的主要困难是跨物种鉴定基因并使用全文而不是摘要。为了解决这些问题,我们开发了一种多阶段GN算法和一种排序方法,该算法利用了论文不同部分中的信息。我们的系统实现了有希望的AUC 0.43471。使用多级GN算法,与一级GN算法相比,我们已经能够将系统性能(AUC)提高1.719%。我们的实验结果还显示,与纯文本相比,与纯文本相比,INT AUC性能提高了22.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号