首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >ICGA-PSO-ELM Approach for Accurate Multiclass Cancer Classification Resulting in Reduced Gene Sets in Which Genes Encoding Secreted Proteins Are Highly Represented
【24h】

ICGA-PSO-ELM Approach for Accurate Multiclass Cancer Classification Resulting in Reduced Gene Sets in Which Genes Encoding Secreted Proteins Are Highly Represented

机译:ICGA-PSO-ELM方法可用于精确的多类癌症分类,从而导致基因集减少,而其中编码分泌蛋白的基因高度代表

获取原文
获取原文并翻译 | 示例

摘要

A combination of Integer-Coded Genetic Algorithm (ICGA) and Particle Swarm Optimization (PSO), coupled with the neural-network-based Extreme Learning Machine (ELM), is used for gene selection and cancer classification. ICGA is used with PSO-ELM to select an optimal set of genes, which is then used to build a classifier to develop an algorithm (ICGA_PSO_ELM) that can handle sparse data and sample imbalance. We evaluate the performance of ICGA-PSO-ELM and compare our results with existing methods in the literature. An investigation into the functions of the selected genes, using a systems biology approach, revealed that many of the identified genes are involved in cell signaling and proliferation. An analysis of these gene sets shows a larger representation of genes that encode secreted proteins than found in randomly selected gene sets. Secreted proteins constitute a major means by which cells interact with their surroundings. Mounting biological evidence has identified the tumor microenvironment as a critical factor that determines tumor survival and growth. Thus, the genes identified by this study that encode secreted proteins might provide important insights to the nature of the critical biological features in the microenvironment of each tumor type that allow these cells to thrive and proliferate.
机译:整数编码遗传算法(ICGA)和粒子群优化(PSO)的结合,再加上基于神经网络的极限学习机(ELM),可用于基因选择和癌症分类。将ICGA与PSO-ELM结合使用以选择最佳基因集,然后将其用于构建分类器以开发可处理稀疏数据和样品不平衡的算法(ICGA_PSO_ELM)。我们评估了ICGA-PSO-ELM的性能,并将我们的结果与文献中的现有方法进行了比较。使用系统生物学方法对选定基因的功能进行的调查显示,许多已鉴定的基因与细胞信号传导和增殖有关。对这些基因集的分析显示,与在随机选择的基因集中发现的编码蛋白质相比,编码分泌蛋白的基因具有更大的代表性。分泌的蛋白质是细胞与其周围环境相互作用的主要手段。越来越多的生物学证据已将肿瘤微环境确定为决定肿瘤存活和生长的关键因素。因此,通过这项研究鉴定出的编码分泌蛋白的基因可能提供重要的见解,从而使每种肿瘤类型的微环境中的关键生物学特征的性质得以实现,从而使这些细胞得以繁衍和增殖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号