首页> 外文会议>International Conference on Current Trends towards Converging Technologies >Classification of Human Cancer Diseases Gene Expression Profiles using Genetic Algorithm by Integrating Protein Protein Interactions Along with Gene Expression Profiles
【24h】

Classification of Human Cancer Diseases Gene Expression Profiles using Genetic Algorithm by Integrating Protein Protein Interactions Along with Gene Expression Profiles

机译:通过整合蛋白质蛋白质相互作用和基因表达谱的遗传算法,对人类癌症疾病的基因表达谱进行分类

获取原文

摘要

The classifications of different cancer types are most important in cancer diagnosis. The several researches are employed to diagnosis the cancer disease. In the existing research work, the classification of cancer disease is performed based on gene expression data. And it is initially presented Information Gain (IG) for Feature selection and Genetic Algorithm (GA) is used for feature reduction to remove the irrelevant features and noise data present in the given data set. Iteratively the Genetic Algorithm (GA) is classified the types of human cancer. The existing approach has some limitation to classify the cancer disease such as high computation time and required large amount of computational resource. In order to overcome this limitation, the integrated gene expression data with Protein- Protein interaction (IGEPPIN) is proposed for predicting cancer disease by prioritizing disease candidate proteins to rank each protein. In this approach initially find the beginning proteins of human and constructed the PPIN of seed proteins from human PPI data. Second, combine the function similarity of the gene expression profiles and protein to protein interactions confidence for calculating weight of each interacting protein for classification of human cancer disease. Subsequently, measure the disease relevance score for each protein by adding the interaction confidence, functional similarity of its neighbours. Finally calculated the weight of proteins in the specific disease and rank them based on descending order of their scores. The proposed system is estimated based on classification Accuracy, Precision, Recall, F- Measure and Specificity.
机译:不同癌症类型的分类在癌症诊断中最重要。数项研究被用于诊断癌症。在现有的研究工作中,基于基因表达数据进行癌症疾病的分类。首先介绍了用于特征选择的信息增益(IG),并使用遗传算法(GA)进行了特征约简,以消除给定数据集中存在的不相关特征和噪声数据。遗传算法(GA)反复对人类癌症的类型进行分类。现有方法在分类癌症疾病方面存在一些局限性,例如计算时间长和需要大量的计算资源。为了克服该限制,提出了具有蛋白质-蛋白质相互作用的整合基因表达数据(IGEPPIN),用于通过优先考虑疾病候选蛋白质以对每种蛋白质进行排名来预测癌症。在这种方法中,最初会找到人类的起始蛋白质,并根据人类PPI数据构建了种子蛋白质的PPIN。第二,结合基因表达谱和蛋白质对蛋白质相互作用的置信度的功能相似性,以计算每种相互作用蛋白质的重量,从而对人类癌症疾病进行分类。随后,通过添加相互作用的置信度,相邻蛋白质的功能相似性,测量每种蛋白质的疾病相关性评分。最后,计算特定疾病中蛋白质的重量,并根据其得分的降序对其进行排名。根据分类准确性,精度,召回率,F量度和专一性对提出的系统进行估算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号