【24h】

SuperQ: Computing Supernetworks from Quartets

机译:SuperQ:从四方计算超级网络

获取原文
获取原文并翻译 | 示例

摘要

Supertrees are a commonly used tool in phylogenetics to summarize collections of partial phylogenetic trees. As a generalization of supertrees, phylogenetic supernetworks allow, in addition, the visual representation of conflict between the trees that is not possible to observe with a single tree. Here, we introduce SuperQ, a new method for constructing such supernetworks (SuperQ is freely available at >www.uea.ac.uk/computing/superq.). It works by first breaking the input trees into quartet trees, and then stitching these together to form a special kind of phylogenetic network, called a split network. This stitching process is performed using an adaptation of the QNet method for split network reconstruction employing a novel approach to use the branch lengths from the input trees to estimate the branch lengths in the resulting network. Compared with previous supernetwork methods, SuperQ has the advantage of producing a planar network. We compare the performance of SuperQ to the Z-closure and Q-imputation supernetwork methods, and also present an analysis of some published data sets as an illustration of its applicability.
机译:超级树是系统发育中用于汇总部分系统发育树的集合的常用工具。作为超级树的一般化,系统发育超级网络还允许视觉上表示树之间的冲突,而这是单棵树无法观察到的。在这里,我们介绍SuperQ,这是一种构建此类超级网络的新方法(SuperQ可从www.uea.ac.uk/computing/superq。免费获得)。它的工作原理是先将输入树分解为四方树,然后将它们拼接在一起以形成一种特殊的系统发育网络,称为分裂网络。使用用于分裂网络重构的QNet方法的改编来执行此拼接过程,该新颖方法使用来自输入树的分支长度来估计所得网络中的分支长度的新颖方法。与以前的超级网络方法相比,SuperQ具有产生平面网络的优势。我们将SuperQ的性能与Z-closure和Q-imputation超级网络方法进行了比较,并提出了一些已发布数据集的分析作为其适用性的例证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号