首页> 外文学位 >Supernetworking the metacomputer: Enabling guaranteed bandwidth through deterministic and efficient provisioning.
【24h】

Supernetworking the metacomputer: Enabling guaranteed bandwidth through deterministic and efficient provisioning.

机译:使元计算机超级网络化:通过确定性和高效的配置启用保证的带宽。

获取原文
获取原文并翻译 | 示例

摘要

How does a protein fold? What happens to space-time when two black holes collide? What impact does species' gene flow have on an ecological community? What are the key factors that drive climate change? Did one of the trillions of collisions at the Large Hadron Collider produce a Higgs boson, the dark matter particle, or a black hole? Can we create an individualized model of each human being for targeted healthcare delivery? How do major technological changes affect human behavior and structure complex social relationships? What answers will we find---to questions we have yet to ask---in the very large datasets that are being produced by telescopes, sensor networks, and other experimental facilities?; These questions---and many others---are only now becoming answerable because of advances in computing and related information technology 1. Once used by a handful of elite researchers in a few research communities on select problems, advanced computing has become essential for future progress across the frontiers of science and engineering. Powered by continuing improvements in microprocessor speeds, visualization, data systems, and collaboration platforms are poised to change the way research and education are accomplished. When all the resources needed for a computation experiment are not available at one place, sophisticated software technology has made it possible to aggregate these resources from geographically distributed locations into a metacomputer. The 'single location, single time zone' bottlenecks that plagued these valuable resources can now be eliminated. Applications like global scale weather simulations, nuclear fusion/fission simulations, genome analysis, or structural analysis and synthesis of proteins, which used to traditionally run only on supercomputers, can now be deployed on affordable commodity clusters. Some of these applications are not only computationally intensive, but are also data-intensive, requiring the daily exchange of Terabytes of data, and projected to reach Petabytes in the very near future.; This data tsunami, i.e., the flood of data from high-performance computing (HPC) systems, has created an unprecedented challenge for the data communication and networking infrastructure. The success of the Internet has greatly surpassed the expectations of its creators, but it is simply not suited to handle this deluge of data. A radical new approach is sought, which should not only meet the colossal requirements of data-hungry applications, but also serves to expose the network as a pliable resource. The later requirement, especially, is a critical one to address the paradigm shift to service-oriented computing. This ubiquitous supernetwork then replaces the computer as the heart of a new digital universe of billions of distributed computational elements and storage devices.; The notion of LambdaGrids, powered by high-speed dynamic optical networks, is fast emerging as an exciting solution to these networking requirements. Technological advances in the field of photonics and management software now make it possible to orchestrate the tremendous bandwidth potential of optical networks with great deal of finesse. This dissertation explores how these new advances can be exploited for the realization of LambdaGrids. We aim to address several system-wide issues in achieving this objective and follow a holistic approach, integrating architecture, design, implementation, optimization, tools, and usability.; The network footprint of HPC applications show pronounced peaks and valleys in utilization, prompting an overhaul of the traditional network provisioning styles such as peak-provisioning, point-and-click, and operator-assisted provisioning. A service-oriented stack must become capable of dynamically orchestrating a complex set of variables related to application requirements, data services, and network provisioning services, all within a rapidly and continually changing environment. Presented in this di
机译:蛋白质如何折叠?当两个黑洞碰撞时,时空会发生什么?物种的基因流对生态群落有什么影响?导致气候变化的关键因素是什么?在大型强子对撞机发生的数万亿次碰撞中,有一个产生了希格斯玻色子,暗物质粒子或黑洞?我们可以为每个人创建针对性的个性化模型以进行有针对性的医疗保健吗?重大技术变革如何影响人类行为并构建复杂的社会关系?我们将在望远镜,传感器网络和其他实验设施产生的超大型数据集中找到哪些答案(尚未回答的问题)?由于计算机和相关信息技术的进步,这些问题-以及许多其他问题-现在才变得可以回答。1.在少数研究社区中,少数精英研究人员对某些问题使用了高级计算之后,高级计算已成为必不可少的问题。科学和工程领域的未来进步。在微处理器速度不断提高的推动下,可视化,数据系统和协作平台有望改变完成研究和教学的方式。当计算实验所需的所有资源都无法在一个地方获得时,先进的软件技术就可以将这些资源从地理位置分布的汇总到一个元计算机中。现在可以消除困扰这些宝贵资源的“单一位置,单个时区”的瓶颈。过去通常只在超级计算机上运行的应用程序,例如全球规模的天气模拟,核聚变/裂变模拟,基因组分析或蛋白质的结构分析和合成,现在可以部署在可负担的商品集群上。其中一些应用不仅计算量大,而且数据量大,需要每天交换TB级的数据,并预计在不久的将来达到PB级。这种数据海啸,即来自高性能计算(HPC)系统的数据泛滥,给数据通信和网络基础架构带来了前所未有的挑战。互联网的成功已经大大超过了其创建者的期望,但是它根本不适合处理这种海量的数据。寻求一种根本的新方法,该方法不仅应满足需要大量数据的应用程序的巨大要求,而且还应将网络公开为一种柔软的资源。尤其是后来的要求,对于解决范式向面向服务的计算的转变至关重要。然后,这种无处不在的超级网络取代了计算机,成为数十亿个分布式计算元素和存储设备的新数字世界的核心。由高速动态光网络提供支持的LambdaGrids概念正迅速出现,成为满足这些网络要求的令人兴奋的解决方案。现在,光子学和管理软件领域的技术进步使人们有可能以很高的技巧协调光网络的巨大带宽潜力。本文探讨了如何利用这些新进展实现LambdaGrids。我们旨在解决实现此目标的系统范围内的若干问题,并采用整体方法,将体系结构,设计,实现,优化,工具和可用性集成在一起。 HPC应用程序的网络覆盖在利用率方面显示出明显的高峰和低谷,从而推动了对传统网络配置样式(例如峰值配置,点击和操作员辅助配置)的全面检查。面向服务的堆栈必须能够动态地编排与应用程序需求,数据服务和网络供应服务相关的一组复杂变量,所有这些变量都必须在一个快速且不断变化的环境中进行。呈现在这个di

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号