首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Identifying Non-Redundant Gene Markers from Microarray Data: A Multiobjective Variable Length PSO-Based Approach
【24h】

Identifying Non-Redundant Gene Markers from Microarray Data: A Multiobjective Variable Length PSO-Based Approach

机译:从微阵列数据中识别非冗余基因标记:基于多目标可变长度PSO的方法

获取原文
获取原文并翻译 | 示例

摘要

Identifying relevant genes which are responsible for various types of cancer is an important problem. In this context, important genes refer to the marker genes which change their expression level in correlation with the risk or progression of a disease, or with the susceptibility of the disease to a given treatment. Gene expression profiling by microarray technology has been successfully applied to classification and diagnostic prediction of cancers. However, extracting these marker genes from a huge set of genes contained by the microarray data set is a major problem. Most of the existing methods for identifying marker genes find a set of genes which may be redundant in nature. Motivated by this, a multiobjective optimization method has been proposed which can find a small set of non-redundant disease related genes providing high sensitivity and specificity simultaneously. In this article, the optimization problem has been modeled as a multiobjective one which is based on the framework of variable length particle swarm optimization. Using some real-life data sets, the performance of the proposed algorithm has been compared with that of other state-of-the-art techniques.
机译:鉴定引起各种类型癌症的相关基因是一个重要的问题。在本文中,重要基因是指与疾病的风险或进展,或疾病对给定治疗的敏感性相关地改变其表达水平的标志物基因。通过微阵列技术进行基因表达谱分析已成功地应用于癌症的分类和诊断预测。但是,从微阵列数据集中包含的大量基因中提取这些标记基因是一个主要问题。大多数现有的鉴定标记基因的方法都发现了一组可能在本质上是多余的基因。因此,提出了一种多目标优化方法,该方法可以找到少量同时提供高灵敏度和特异性的非冗余疾病相关基因。在本文中,优化问题已被建模为基于可变长度粒子群优化框架的多目标模型。使用一些现实生活中的数据集,该算法的性能已与其他最新技术进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号