首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty
【24h】

Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty

机译:存在不确定性时基因调控网络的最优实验设计

获取原文
获取原文并翻译 | 示例

摘要

Of major interest to translational genomics is the intervention in gene regulatory networks (GRNs) to affect cell behavior; in particular, to alter pathological phenotypes. Owing to the complexity of GRNs, accurate network inference is practically challenging and GRN models often contain considerable amounts of uncertainty. Considering the cost and time required for conducting biological experiments, it is desirable to have a systematic method for prioritizing potential experiments so that an experiment can be chosen to optimally reduce network uncertainty. Moreover, from a translational perspective it is crucial that GRN uncertainty be quantified and reduced in a manner that pertains to the operational cost that it induces, such as the cost of network intervention. In this work, we utilize the concept of mean objective cost of uncertainty (MOCU) to propose a novel framework for optimal experimental design. In the proposed framework, potential experiments are prioritized based on the MOCU expected to remain after conducting the experiment. Based on this prioritization, one can select an optimal experiment with the largest potential to reduce the pertinent uncertainty present in the current network model. We demonstrate the effectiveness of the proposed method via extensive simulations based on synthetic and real gene regulatory networks.
机译:翻译基因组学的主要兴趣是对基因调控网络(GRN)的干预,以影响细胞行为。特别是改变病理表型。由于GRN的复杂性,准确的网络推断实际上具有挑战性,并且GRN模型通常包含大量不确定性。考虑到进行生物学实验所需的成本和时间,希望有一种系统的方法来对潜在的实验进行优先排序,以便可以选择一个实验来最佳地减少网络不确定性。此外,从转换的角度来看,至关重要的是,量化和降低GRN不确定性的方式应与其引起的运营成本(例如网络干预成本)有关。在这项工作中,我们利用不确定性平均目标成本(MOCU)的概念提出了一种用于最佳实验设计的新颖框架。在提出的框架中,根据进行实验后预计会保留的MOCU优先考虑潜在的实验。基于此优先级,可以选择具有最大潜力的最佳实验,以减少当前网络模型中存在的相关不确定性。我们通过基于合成和真实基因调控网络的广泛模拟证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号