首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Predicting the Pro-Longevity or Anti-Longevity Effect of Model Organism Genes with New Hierarchical Feature Selection Methods
【24h】

Predicting the Pro-Longevity or Anti-Longevity Effect of Model Organism Genes with New Hierarchical Feature Selection Methods

机译:用新的层次特征选择方法预测模型生物基因的长寿或长寿效应

获取原文
获取原文并翻译 | 示例

摘要

Ageing is a highly complex biological process that is still poorly understood. With the growing amount of ageing-related data available on the web, in particular concerning the genetics of ageing, it is timely to apply data mining methods to that data, in order to try to discover novel patterns that may assist ageing research. In this work, we introduce new hierarchical feature selection methods for the classification task of data mining and apply them to ageing-related data from four model organisms: (worm), (yeast), (fly), and (mouse). The main novel aspect of the proposed feature selection methods is that they exploit hierarchical relationships in the set of features (Gene Ontology terms) in order to improve the predictive accuracy of the Naïve Bayes and -Nearest Neighbour (1-NN) classifiers, which are used to classify model organisms’ genes into pro-longevity or anti-longevity genes. The results show that our hierarchical feature selection methods, when used together with Naïve Bayes and 1-NN classifiers, obtain higher predictive accuracy than the standard (without feature selection) Naïve Bayes and 1-NN classifiers, respectively. We also discuss the biological relevance of a number of Gene Ontology terms very frequently selected by our algorithms in our datasets.
机译:衰老是一个高度复杂的生物学过程,至今仍知之甚少。随着网络上与衰老相关数据的不断增长,特别是有关衰老的遗传学,现在应该将数据挖掘方法应用于该数据,以期发现可能有助于衰老研究的新颖模式。在这项工作中,我们为数据挖掘的分类任务引入了新的分层特征选择方法,并将其应用于来自四个模型生物的(蠕虫),(酵母),(蝇)和(小鼠)与衰老相关的数据。拟议的特征选择方法的主要新颖方面是,它们利用特征集(基因本体论术语)中的层次关系来提高朴素贝叶斯和最近邻(1-NN)分类器的预测准确性。用于将模型生物的基因分为长寿基因或反长寿基因。结果表明,当与朴素贝叶斯和1-NN分类器结合使用时,我们的分层特征选择方法分别比标准(无特征选择)朴素贝叶斯和1-NN分类器获得更高的预测准确性。我们还将讨论由我们的算法在数据集中经常选择的许多基因本体术语的生物学相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号