首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data
【24h】

A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data

机译:从时程基因微阵列数据推断基因调控网络的最大后验概率和时变方法

获取原文
获取原文并翻译 | 示例

摘要

Unlike most conventional techniques with static model assumption, this paper aims to estimate the time-varying model parameters and identify significant genes involved at different timepoints from time course gene microarray data. We first formulate the parameter identification problem as a new maximum a posteriori probability estimation problem so that prior information can beincorporated as regularization terms to reduce the large estimation variance of the high dimensional estimation problem. Under this framework, sparsity and temporal consistency of the model parameters are imposed using -regularization and novel continuityconstraints, respectively. The resulting problem is solved using the L-BFGS method with the initial guess obtained from the partial least squares method. A novel forward validation measure is also proposed for the selection of regularization parameters, based on bothforward and current prediction errors. The proposed method is evaluated using a synthetic benchmark testing data and a publiclyavailable yeast cell cycle microarray data. For the latter particularly, a number of significant genes identified at different timepoints are found to be biological significant according to previous findings in biological experiments. These suggest that the proposed approach may serve as a valuable tool for inferring time-varying gene regulatory networks in biological studies.
机译:与大多数采用静态模型假设的常规技术不同,本文旨在估计时变模型参数并从时程基因微阵列数据中识别出在不同时间点涉及的重要基因。我们首先将参数识别问题公式化为新的最大后验概率估计问题,以便可以将先验信息作为正则项合并,以减少高维估计问题的大估计方差。在此框架下,分别使用正则化和新颖的连续性约束来强加模型参数的稀疏性和时间一致性。使用L-BFGS方法解决了由此产生的问题,并从偏最小二乘方法获得了初始猜测。基于正向和当前预测误差,还提出了一种新颖的前向验证措施,用于选择正则化参数。使用合成的基准测试数据和可公开获得的酵母细胞周期微阵列数据对提出的方法进行评估。特别是对于后者,根据先前在生物学实验中的发现,发现在不同时间点鉴定出的许多重要基因具有生物学意义。这些表明,所提出的方法可能是推断生物学研究中时变基因调控网络的有价值的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号