首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data
【24h】

A Multi-Laplacian Prior and Augmented Lagrangian Approach to the Exploratory Analysis of Time-Varying Gene and Transcriptional Regulatory Networks for Gene Microarray Data

机译:多拉普拉斯先验和增强拉格朗日方法对时变基因和基因芯片数据转录调控网络的探索性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel multi-Laplacian prior (MLP) and augmented Lagrangian method (ALM) approach for gene interactions and putative transcription factors (TFs) identification from time-course gene microarray data. It employs a non-linear time-varying auto-regressive (N-TVAR) model and the Maximum-A-Posteriori-Probability method for incorporating the multi-Laplacian prior and the continuity constraint. The MLP allows connections to/from a gene to be better preserved for putative TF identification in non-stationarity gene regulatory network as compared with conventional L-1-based penalties. Moreover, the ALM allows the resultant non-smooth L-1-based penalties to be decoupled from the remaining smooth terms, so that the former and latter can be efficiently solved using a low-complexity proximity operator and smooth optimization technique, respectively. Synthetic and real time-course gene microarray datasets are tested to evaluate the performance of the proposed method. Experimental results show that the proposed method gives better accuracy and higher computational speed than our previous work using smoothed approximation. Moreover, its performance, without the use of ChIP-chip data, is found to be highly comparable with other state-of-the-art methods integrating both ChIP-chip and gene microarray data. It suggests that the proposed method may serve as a useful exploratory tool for putative TF identification with reduced experimental cost.
机译:本文提出了一种新颖的多拉普拉斯先验(MLP)和增强拉格朗日方法(ALM)方法,用于从时程基因微阵列数据中鉴定基因相互作用和推定转录因子(TFs)。它采用了非线性时变自回归(N-TVAR)模型和最大A后验概率方法,以结合多拉普拉斯先验和连续性约束。与传统的基于L-1的惩罚相比,MLP可以更好地保留与基因的连接/从基因的连接,以便在非平稳性基因调控网络中进行推定TF鉴定。此外,ALM允许将所得的基于非光滑L-1的惩罚与剩余的平滑项分离,从而可以分别使用低复杂度的接近算子和平滑优化技术有效地解决前者和后者。合成和实时课程基因微阵列数据集进行测试,以评估该方法的性能。实验结果表明,与我们先前使用平滑近似的工作相比,该方法具有更高的精度和更高的计算速度。而且,在不使用ChIP芯片数据的情况下,其性能与集成ChIP芯片和基因微阵列数据的其他最新方法高度可比。这表明所提出的方法可以作为一种有用的探索性工具,用于以较低的实验成本进行TF鉴定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号