首页> 外文期刊>Bioinformatics >Boolean dynamics of genetic regulatory networks inferred from microarray time series data
【24h】

Boolean dynamics of genetic regulatory networks inferred from microarray time series data

机译:从微阵列时间序列数据推断遗传调控网络的布尔动力学

获取原文
获取原文并翻译 | 示例

摘要

Motivation: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. Results: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.
机译:动机:遗传调控网络的推论可用的方法通常是通过优化一些数量以适应实验观察结果,努力产生一个单一的网络。在本文中,我们研究了推断出多个网络的可能性,所有这些都导致了类似的动态变化。这个想法是由理论工作激发的,该工作表明生物网络是健壮的且适应变化,并且遗传调控网络的整体行为可能是根据动态吸引盆地来捕获的。结果:我们已经开发并实施了一种推断时间序列微阵列数据遗传调控网络的方法。我们的方法首先使用k均值和支持向量回归对基因表达数据进行聚类和离散化。然后,我们枚举布尔激活抑制网络以匹配离散化数据。最后,检查布尔网络的动力学。我们已经在两个免疫学微阵列数据集上测试了我们的方法:IL-2刺激的T细胞反应数据集和LPS刺激的巨噬细胞反应数据集。在这两种情况下,我们都发现许多网络都与数据匹配,并且这些网络中的大多数具有相似的动态性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号