首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure
【24h】

Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure

机译:使用加权PageRank-Nibble算法和核心附件结构鉴定蛋白质复合物

获取原文
获取原文并翻译 | 示例

摘要

Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value.The software for WPNCA is available at “http:/etlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html”
机译:蛋白质复合物在理解大多数细胞功能的潜在机制中起着重要作用。最近,许多研究人员探索了从蛋白质-蛋白质相互作用(PPI)网络识别蛋白质复合物的计算方法。一组研究人员专注于通过考虑本地邻居来检测与蛋白质复合物相对应的本地密集子图。这种方法的缺点是忽略了网络的全局信息。提出了诸如马尔可夫聚类算法(Markov Clustering Algorithm,MCL),PageRank-Nibble等基于随机游走技术寻找蛋白质复合物的方法,该方法可以利用网络的全局结构。但是,这些方法忽略了蛋白质复合物固有的核心连接结构,并平等地对待相邻节点。本文设计了一种加权的PageRank-Nibble加权算法,该算法为每个相邻节点分配不同的概率,并提出了一种名为WPNCA的新方法,它利用加权的PageRank-Nibble算法和核心连接结构从PPI网络中检测蛋白质复合物。首先,WPNCA通过使用加权PageRank-Nibble算法将PPI网络划分为多个密集集群。然后,检测这些簇的核心,并选择簇中的其余蛋白质作为附件,以形成最终的预测蛋白复合物。酵母数据实验表明WPNCA在准确性和p值方面均优于现有方法。WPNCA软件可从以下网址获得:http:/etlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download。 html”

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号