首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Optimization of Signal Decomposition Matched Filtering (SDMF) for Improved Detection of Copy-Number Variations
【24h】

Optimization of Signal Decomposition Matched Filtering (SDMF) for Improved Detection of Copy-Number Variations

机译:信号分解匹配滤波(SDMF)的优化,可更好地检测拷贝数变异

获取原文
获取原文并翻译 | 示例

摘要

We aim to improve the performance of the previously proposed signal decomposition matched filtering (SDMF) method [26] for the detection of copy-number variations (CNV) in the human genome. Through simulations, we show that the modified SDMF is robust even at high noise levels and outperforms the original SDMF method, which indirectly depends on CNV frequency. Simulations are also used to develop a systematic approach for selecting relevant parameter thresholds in order to optimize sensitivity, specificity and computational efficiency. We apply the modified method to array CGH data from normal samples in the cancer genome atlas (TCGA) and compare detected CNVs to those estimated using circular binary segmentation (CBS) [19] , a hidden Markov model (HMM)-based approach [11] and a subset of CNVs in the Database of Genomic Variants. We show that a substantial number of previously identified CNVs are detected by the optimized SDMF, which also outperforms the other two methods.
机译:我们旨在提高先前提出的信号分解匹配滤波(SDMF)方法[26]的性能,以用于检测人类基因组中的拷贝数变异(CNV)。通过仿真,我们表明,即使在高噪声水平下,改进的SDMF仍具有鲁棒性,并且性能优于原始SDMF方法,后者间接依赖于CNV频率。仿真也被用来开发一种系统的方法来选择相关的参数阈值,以优化灵敏度,特异性和计算效率。我们将修改后的方法应用于从癌症基因组图谱(TCGA)中的正常样本中提取CGH数据,并将检测到的CNV与使用圆二进制分割(CBS)估计的CNV进行比较[19],这是一种基于隐马尔可夫模型(HMM)的方法[11] ]和基因组变体数据库中的CNV子集。我们显示,通过优化的SDMF可检测到大量先前确定的CNV,这也胜过其他两种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号