首页> 外文期刊>Mechanical systems and signal processing >An improved variational mode decomposition method based on particle swarm optimization for leak detection of liquid pipelines
【24h】

An improved variational mode decomposition method based on particle swarm optimization for leak detection of liquid pipelines

机译:基于粒子群优化的改进变分模分解方法,用于液体管道泄漏检测

获取原文
获取原文并翻译 | 示例

摘要

Leak detection is critical for the safety management of pipelines since leakages may cause serious accidents. The present paper aims to develop an efficient method able to detect the presence and importance of leaks in pipelines. This method relies on adequate signal processing of acoustic emission (AE) signals, and improves the variational mode decomposition (VMD) for signal de-noising. In order to optimize the governing parameters, i.e. the penalty term and the mode number of VMD, the particle swarm optimization (PSO) algorithm is coupled to a fitness function based on maximum entropy (ME). After the signal reconstruction, based on the energy ratio of each VMD sub-mode, the waveform feature vectors for leak detection are extracted. Finally, the support vector machine (SVM) is employed for leak pattern recognition. For calibration purposes, artificial input signal is simulated. The results show that the proposed PSO-VMD method is capable of de-noising background noise. For validation purposes, experiments have been conducted on metal pipelines, with water flow. For sensitivity analysis, a set of five different leak apertures are adopted: aperture diameters as {10; 12: 15; 20; 27} mm, whereas the pipeline diameter is 108 mm. A database of AE signals is collected for each leak aperture, and different time sequences. The proposed method appears to be efficient since the classification accuracy of the SVM method reaches up to 100% in identifying the size of the leak on the basis of the AE signals collected in the database for the same leak size, and 89.3% on the basis of the whole database.
机译:泄漏检测对于管道的安全管理至关重要,因为泄漏可能导致严重事故。本文旨在开发一种能够检测管​​道中泄漏的存在和重要性的有效方法。该方法依赖于声发射(AE)信号的足够信号处理,并改善了用于信号去噪的变分模式分解(VMD)。为了优化管理参数,即惩罚项和VMD的模式数,粒子群优化(PSO)算法基于最大熵(ME)耦合到健身功能。在信号重建之后,基于每个VMD子模式的能量比,提取用于泄漏检测的波形特征向量。最后,用于泄漏模式识别的支持向量机(SVM)。为了校准目的,模拟人造输入信号。结果表明,所提出的PSO-VMD方法能够取消通知背景噪音。出于验证目的,在金属管道上进行了实验,水流。对于灵敏度分析,采用了一组五种不同的泄漏孔:孔径直径为{10; 12:15; 20; 27} mm,而管道直径为108毫米。针对每个泄漏孔径和不同的时间序列收集AE信号的数据库。所提出的方法似乎是有效的,因为SVM方法的分类精度在识别数据库中收集的AE信号的泄漏的尺寸达到100%,基于相同的泄漏尺寸,89.3%整个数据库。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2020年第9期|106787.1-106787.17|共17页
  • 作者单位

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China University Gustave Eiffel Laboratory Multi Scale and Simulation (MSME: Univ. Gustave Eiffel UPEC CNRS/UMR 8208) 5 blvd Descartes 77454 Marne-La-Vallee France;

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China School of Environmental and Safety Engineering Changzhou University Changzhou 213164 Jiangsu China;

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China;

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China;

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China;

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China;

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China University Gustave Eiffel Laboratory Multi Scale and Simulation (MSME: Univ. Gustave Eiffel UPEC CNRS/UMR 8208) 5 blvd Descartes 77454 Marne-La-Vallee France;

    Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing Tech University Nanjing 211816 Jiangsu China;

    School of Environmental and Safety Engineering Changzhou University Changzhou 213164 Jiangsu China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Variational mode decomposition; Particle swarm optimization algorithm; Maximum entropy; Waveform features; Support vector machine; Pipeline leak detection;

    机译:变分模式分解;粒子群优化算法;最大熵;波形特征;支持向量机;管道泄漏检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号