首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Three-Dimensional Path Planning for Uninhabited Combat Aerial Vehicle Based on Predator-Prey Pigeon-Inspired Optimization in Dynamic Environment
【24h】

Three-Dimensional Path Planning for Uninhabited Combat Aerial Vehicle Based on Predator-Prey Pigeon-Inspired Optimization in Dynamic Environment

机译:基于捕食者-猎物鸽子启发的动态环境中无人战斗机的三维路径规划

获取原文
获取原文并翻译 | 示例

摘要

Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.
机译:无人战斗机(UCAV)的三维路径规划是一个复杂的优化问题,主要集中在考虑复杂战斗环境下不同约束类型的飞行路线优化。针对动态环境下的UCAV三维路径规划问题,提出了一种新颖的捕食者-鸽子启发式优化(PPPIO)方法。鸽子启发式优化(PIO)是一种新的生物启发式优化算法。在该算法中,使用地图和指南针算子模型以及地标算子模型来搜索函数的最佳结果。捕食者-捕食者的概念被采用来改善全局最佳性能并提高收敛速度。最优路径的特征以成本函数的形式表示。对比仿真结果表明,我们提出的PPPIO算法在解决UCAV三维路径规划问题上比基本PIO,粒子群优化(PSO)和不同演化(DE)更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号